Kim Cherry, Hong Sehyun, Choi Hangseok, Yoo Won-Seok, Kim Jin Young, Chang Suyon, Park Chan Ho, Hong Su Jin, Yang Dong Hyun, Yong Hwan Seok, van Assen Marly, De Cecco Carlo N, Suh Young Joo
Department of Radiology, Korea University Ansan Hospital, Ansan, Republic of Korea.
Coreline Soft Co., Ltd, Seoul, Republic of Korea.
Korean J Radiol. 2025 Aug;26(8):759-770. doi: 10.3348/kjr.2025.0177. Epub 2025 Jun 13.
To evaluate the impact of deep learning-based image conversion on the accuracy of automated coronary artery calcium quantification using thin-slice, sharp-kernel, non-gated, low-dose chest computed tomography (LDCT) images collected from multiple institutions.
A total of 225 pairs of LDCT and calcium scoring CT (CSCT) images scanned at 120 kVp and acquired from the same patient within a 6-month interval were retrospectively collected from four institutions. Image conversion was performed for LDCT images using proprietary software programs to simulate conventional CSCT. This process included 1) deep learning-based kernel conversion of low-dose, high-frequency, sharp kernels to simulate standard-dose, low-frequency kernels, and 2) thickness conversion using the raysum method to convert 1-mm or 1.25-mm thickness images to 3-mm thickness. Automated Agaston scoring was conducted on the LDCT scans before (LDCT-Org) and after the image conversion (LDCT-CONV). Manual scoring was performed on the CSCT images (CSCT) and used as a reference standard. The accuracy of automated Agaston scores and risk severity categorization based on the automated scoring on LDCT scans was analyzed compared to the reference standard, using the Bland-Altman analysis, concordance correlation coefficient (CCC), and weighted kappa (κ) statistic.
LDCT-CONV demonstrated a reduced bias for Agaston score, compared with CSCT, than LDCT-Org did (-3.45 vs. 206.7). LDCT-CONV showed a higher CCC than LDCT-Org did (0.881 [95% confidence interval {CI}, 0.750-0.960] vs. 0.269 [95% CI, 0.129-0.430]). In terms of risk category assignment, LDCT-Org exhibited poor agreement with CSCT (weighted κ = 0.115 [95% CI, 0.082-0.154]), whereas LDCT-CONV achieved good agreement (weighted κ = 0.792 [95% CI, 0.731-0.847]).
Deep learning-based conversion of LDCT images originally obtained with thin slices and a sharp kernel can enhance the accuracy of automated coronary artery calcium score measurement using the images.
使用从多个机构收集的薄层、锐利内核、非门控、低剂量胸部计算机断层扫描(LDCT)图像,评估基于深度学习的图像转换对自动冠状动脉钙化定量准确性的影响。
回顾性收集了来自四个机构的总共225对LDCT和钙化评分CT(CSCT)图像,这些图像在120 kVp下扫描,并在6个月内从同一患者获取。使用专有软件程序对LDCT图像进行图像转换,以模拟传统CSCT。该过程包括:1)基于深度学习的内核转换,将低剂量、高频、锐利内核转换为模拟标准剂量、低频内核;2)使用射线求和法进行厚度转换,将1毫米或1.25毫米厚度的图像转换为3毫米厚度。在图像转换前(LDCT-Org)和转换后(LDCT-CONV)对LDCT扫描进行自动阿加斯顿评分。对CSCT图像进行手动评分并用作参考标准。使用布兰德-奥特曼分析、一致性相关系数(CCC)和加权kappa(κ)统计量,将基于LDCT扫描自动评分的自动阿加斯顿评分和风险严重程度分类的准确性与参考标准进行比较分析。
与CSCT相比,LDCT-CONV在阿加斯顿评分方面的偏差比LDCT-Org更小(-3.45对206.7)。LDCT-CONV的CCC高于LDCT-Org(0.881[95%置信区间{CI},0.750-于0.960]对0.269[95%CI,0.129-0.430])。在风险类别分配方面,LDCT-Org与CSCT的一致性较差(加权κ=0.115[95%CI,0.082-0.154]),而LDCT-CONV达成了良好的一致性(加权κ=0.792[95%CI,0.731-0.847])。
基于深度学习对最初获得的薄层和锐利内核的LDCT图像进行转换,可以提高使用这些图像进行自动冠状动脉钙化评分测量的准确性。