Adamala Sirisha, Velmurugan A, Swarnam T P, Palakuru Mahesh, Subramani T, Jaisankar I, Nanda B K, Kumari Nikul, Srivastava Ankur
ICAR-Central Island Agricultural Research Institute (CIARI), Port Blair, 744105, India.
ICAR-National Bureau of Soil Survey & Land Use Planning (NBSS&LUP), Nagpur, 440033, India.
Environ Monit Assess. 2025 Jun 17;197(7):758. doi: 10.1007/s10661-025-14239-4.
This study aims at analyzing the patterns of soil moisture in the South Andaman district using an integrated approach that incorporates Sentinel-1A C-band synthetic aperture radar (SAR) data and other auxiliary data from Sentinel-2A and Landsat 8. A total of 60 surface soil samples (0-10 cm) were collected from four predominant land uses for 2020-2022 years to represent real-time soil moisture status. Soil moisture index (SMI) is assessed based on thermal remote sensing data besides, normalized difference vegetation index (NDVI) from red and infrared bands, and dielectric constants (ε) from soil textural analysis. Artificial neural network (ANN) models were developed along with multiple linear regression (MLR) to retrieve the soil moisture accurately using input parameters such as backscatter coefficients (σ°: VV and VH), NDVI, SMI, and ε. The performance of modelled soil moisture is evaluated using different statistical index-based criteria concerning field-based volumetric soil moisture measurements (SMCv). It is found that positive correlation among (σ°: VV + VH) and (SMCv: %) for all land uses and high R values for barren and vegetable fields. The vegetation interferes the backscatter signal and misinterprets the soil moisture estimation solely with only SAR data. However, consideration of NDVI and SMI improves the soil moisture estimation in case of vegetation abundance land uses. The comparative results showed that ANN models surpass MLR models in soil moisture estimation with high R (0.67-0.99) and η (62.6-99.9) and low RMSE (0.05-2.19%) and MAE (0.03-1.74%) values. By providing essential baseline data for hydrological modeling, this study supports the design of efficient irrigation systems.
本研究旨在采用一种综合方法分析南安达曼地区的土壤湿度模式,该方法结合了哨兵 - 1A C波段合成孔径雷达(SAR)数据以及来自哨兵 - 2A和陆地卫星8的其他辅助数据。在2020 - 2022年期间,从四种主要土地利用类型中总共采集了60个表层土壤样本(0 - 10厘米),以代表实时土壤湿度状况。除了基于热遥感数据评估土壤湿度指数(SMI)外,还利用红波段和红外波段的归一化植被指数(NDVI)以及土壤质地分析得出的介电常数(ε)进行评估。开发了人工神经网络(ANN)模型以及多元线性回归(MLR),以便使用诸如后向散射系数(σ°:VV和VH)、NDVI、SMI和ε等输入参数准确反演土壤湿度。使用基于不同统计指标的标准,针对基于实地的体积土壤湿度测量(SMCv)来评估模拟土壤湿度的性能。研究发现,所有土地利用类型的(σ°:VV + VH)与(SMCv:%)之间存在正相关,荒地和菜地的R值较高。植被会干扰后向散射信号,仅使用SAR数据会错误解读土壤湿度估计。然而,在植被丰富的土地利用情况下,考虑NDVI和SMI可改善土壤湿度估计。比较结果表明,在土壤湿度估计方面,ANN模型优于MLR模型,其R值较高(0.67 - 0.99),η值较高(62.6 - 99.9),RMSE值较低(0.05 - 2.19%),MAE值较低(0.03 - 1.74%)。通过为水文建模提供重要的基础数据,本研究支持高效灌溉系统的设计。