Barakati Kamyar, Liu Yu, Nelson Chris, Ziatdinov Maxim, Zhang Xiaohang, Takeuchi Ichiro, Kalinin Sergei V
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Adv Mater. 2025 Sep;37(35):e2418927. doi: 10.1002/adma.202418927. Epub 2025 Jun 18.
Rapid progress in aberration corrected electron microscopy necessitates development of robust methods for the identification of phases, ferroic variants, and other pertinent aspects of materials structure from imaging data. While unsupervised methods for clustering and classification are widely used for these tasks, their performance can be sensitive to hyperparameter selection in the analysis workflow. In this study, the effects of descriptors and hyperparameters are explored on the capability of unsupervised ML methods to distill local structural information, exemplified by the discovery of polarization and lattice distortion in Sm - dopped BiFeO (BFO) thin films. It is demonstrated that a reward-driven approach can be used to optimize these key hyperparameters across the full workflow, where rewards are designed to reflect domain wall continuity and straightness, ensuring that the analysis aligns with the material's physical behavior. This approach allows the discovery of local descriptors that are best aligned with the specific physical behavior, providing insight into the fundamental physics of materials. The reward driven workflow is further extended to disentangle structural factors of variation via an optimized variational autoencoder (VAE). Finally, the importance of well-defined rewards is explored as a quantifiable measure of the success of the workflow.
像差校正电子显微镜的快速发展使得开发强大的方法成为必要,以便从成像数据中识别材料结构的相、铁电变体和其他相关方面。虽然无监督的聚类和分类方法广泛用于这些任务,但其性能在分析工作流程中可能对超参数选择敏感。在本研究中,以在掺钐的BiFeO(BFO)薄膜中发现极化和晶格畸变为例,探讨了描述符和超参数对无监督机器学习方法提取局部结构信息能力的影响。结果表明,可以使用奖励驱动的方法在整个工作流程中优化这些关键超参数,其中奖励旨在反映畴壁的连续性和直线度,确保分析与材料的物理行为一致。这种方法能够发现与特定物理行为最匹配的局部描述符,从而深入了解材料的基本物理特性。奖励驱动的工作流程通过优化的变分自编码器(VAE)进一步扩展,以分解结构变化因素。最后,探讨了明确定义的奖励作为工作流程成功的可量化衡量标准的重要性。