Suppr超能文献

基于明胶-海藻酸盐生物聚合物的离子可调凝胶电解质用于高性能超级电容器。

Ionically Tunable Gel Electrolytes Based on Gelatin-Alginate Biopolymers for High-Performance Supercapacitors.

作者信息

Tordi Pietro, Montes-García Verónica, Tamayo Adrián, Bonini Massimo, Samorì Paolo, Ciesielski Artur

机构信息

ISIS UMR7006, Université de Strasbourg, CNRS, 8 allée Gaspard Monge, Strasbourg, F-67000, France.

Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.

出版信息

Small. 2025 Aug;21(33):e2503937. doi: 10.1002/smll.202503937. Epub 2025 Jun 17.

Abstract

The development of sustainable, high-performance gel polymer electrolytes (GPEs) is crucial for next-generation energy storage; however, existing materials often exhibit limited mechanical stability, suboptimal ionic transport, or environmental drawbacks. Here, for the first time gelatin-alginate organohydrogels  crosslinked with Cu and Mn are used as GPEs for supercapacitors, in combination with Li incorporation to enhance ionic conductivity and transport. Small-Angle X-ray Scattering (SAXS) reveals that the choice of the crosslinking cation governs the nanoscale organization of the polymer network-reflected in distinct correlation lengths-which in turn critically influences ionic transport, mechanical stability, and electrochemical performance. Cu-crosslinked gels achieve the highest areal capacitance (591.8 mF cm), energy density (82.2 µWh cm), and power density (1957.8 µW cm), whereas Mn-crosslinked gels exhibit superior cycling stability (88.3% retention over 5000 cycles). Li incorporation increases the mechanical flexibility of Mn-based gels-reducing the compressive modulus by over 60%-enhancing ion mobility and charge storage. Conversely, Cu-based gels maintain structural integrity while exhibiting improved conductivity. These findings demonstrate how biopolymer-based GPEs, designed through nanoscale engineering and ion doping, achieve an optimal balance of mechanical robustness and electrochemical performance. By combining scalability and exceptional energy storage capabilities, these materials establish a new paradigm for flexible supercapacitors and sustainable energy technologies.

摘要

开发可持续的高性能凝胶聚合物电解质(GPE)对于下一代储能至关重要;然而,现有材料往往表现出有限的机械稳定性、次优的离子传输性能或环境缺陷。在此,首次将与铜和锰交联的明胶-藻酸盐有机水凝胶用作超级电容器的GPE,并结合锂的掺入来提高离子电导率和传输性能。小角X射线散射(SAXS)表明,交联阳离子的选择决定了聚合物网络的纳米级组织——这反映在不同的相关长度上——进而对离子传输、机械稳定性和电化学性能产生关键影响。铜交联凝胶实现了最高的面积电容(591.8 mF/cm²)、能量密度(82.2 μWh/cm²)和功率密度(1957.8 μW/cm²),而锰交联凝胶表现出卓越的循环稳定性(在5000次循环后保留率为88.3%)。锂的掺入增加了锰基凝胶的机械柔韧性——压缩模量降低了60%以上——提高了离子迁移率和电荷存储能力。相反,铜基凝胶在提高电导率的同时保持结构完整性。这些发现表明,通过纳米级工程和离子掺杂设计的基于生物聚合物的GPE如何实现机械强度和电化学性能的最佳平衡。通过结合可扩展性和卓越的储能能力,这些材料为柔性超级电容器和可持续能源技术建立了新的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bbc/12372438/af86b6b9289f/SMLL-21-2503937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验