Suppr超能文献

通过表面活性剂优化改善胶束促进的DNA编码文库合成。

Improvements in micelle promoted DNA-encoded library synthesis by surfactant optimisation.

作者信息

Odger Jake A, Anderson Matthew J, Carton Thomas P, Nguyen Bao, Foote Kevin, Waring Michael J

机构信息

Cancer Research Horizons Newcastle Drug Discovery Group, Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.

出版信息

Org Biomol Chem. 2025 Jun 18. doi: 10.1039/d5ob00864f.

Abstract

DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki-Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.

摘要

DNA编码文库在药物发现过程早期的活性分子识别中变得越来越重要。该方法依赖于合成与编码DNA序列相连的类药物化合物的有效方法。用于文库合成的许多反应效率低下,会导致显著的DNA损伤、不完全转化以及副产物的形成,这些都会损害所得文库的保真度。我们开发了一系列由形成胶束的表面活性剂TPGS-750-M促进的反应,这些反应解决了这些问题并提高了效率。在这里,我们通过使用基于主成分的表面活性剂图谱进行表面活性剂筛选,展示了对关键反应铃木-宫浦偶联、还原胺化和酰胺偶联的进一步改进,这导致了有问题底物的转化率提高。这项工作证明了表面活性剂图谱在DNA编码文库合成反应优化中的实用性,并导致了这些重要转化的进一步改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1be/12175057/e123fd692bd0/d5ob00864f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验