探索人工智能在麻醉学领域的发展与影响:一项2004年至2024年的文献计量学研究
Exploring the growth and impact of artificial intelligence in anesthesiology: a bibliometric study from 2004 to 2024.
作者信息
Liu Keke, Qiu Weicheng, Yang Xinping
机构信息
Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
出版信息
Front Med (Lausanne). 2025 Jun 2;12:1595060. doi: 10.3389/fmed.2025.1595060. eCollection 2025.
BACKGROUND
The integration of artificial intelligence (AI) in anesthesiology is revolutionizing clinical practice by enhancing patient monitoring, improving risk assessment, and enabling personalized anesthetic care. This bibliometric analysis aims to evaluate publication trends, key contributors, and emerging translational pathways in AI research in anesthesiology, with special emphasis on clinical relevance, thematic clustering, and future application prospects.
MATERIALS AND METHODS
Publications related to AI in anesthesiology from 2004 to 2024 were retrieved from the Web of Science Core Collection database, resulting in 658 articles. VOSviewer and CiteSpace were employed for the bibliometric analysis.
RESULTS
AI research in anesthesiology has experienced substantial growth, with a notable surge between 2019 and 2020. The United States leads in both publication volume and citation impact, reflecting its central role in advancing AI-driven innovations. Major journals such as and play central roles in disseminating key findings. Keyword and journal cluster analyses revealed three major translational domains: real-time perioperative risk prediction (e.g., hypotension, mortality), AI-assisted ultrasound for regional anesthesia, and intelligent anesthesia monitoring systems. Despite progress, emerging concerns such as model interpretability, patient-centered outcomes, and multimodal data integration remain underexplored.
CONCLUSION
AI in anesthesiology is entering a phase of rapid interdisciplinary expansion, integrating clinical needs with computational innovation. Future research should prioritize the clinical validation of AI tools, foster stronger collaboration between computer scientists and anesthesiologists, and address unresolved translational gaps such as model interpretability and cross-modal data fusion.
背景
人工智能(AI)在麻醉学中的应用正在通过加强患者监测、改进风险评估和实现个性化麻醉护理来彻底改变临床实践。这项文献计量分析旨在评估麻醉学中人工智能研究的发表趋势、主要贡献者和新兴转化途径,特别强调临床相关性、主题聚类和未来应用前景。
材料与方法
从科学网核心合集数据库中检索2004年至2024年与麻醉学中人工智能相关的出版物,共得到658篇文章。使用VOSviewer和CiteSpace进行文献计量分析。
结果
麻醉学中的人工智能研究取得了显著增长,在2019年至2020年期间出现了明显的激增。美国在发表量和引用影响力方面均领先,这反映了其在推动人工智能驱动的创新方面的核心作用。《 》和《 》等主要期刊在传播关键研究结果方面发挥着核心作用。关键词和期刊聚类分析揭示了三个主要的转化领域:围手术期实时风险预测(如低血压、死亡率)、用于区域麻醉的人工智能辅助超声以及智能麻醉监测系统。尽管取得了进展,但诸如模型可解释性、以患者为中心的结果和多模态数据整合等新出现的问题仍未得到充分探索。
结论
麻醉学中的人工智能正在进入一个快速跨学科扩展的阶段,将临床需求与计算创新相结合。未来的研究应优先对人工智能工具进行临床验证,促进计算机科学家和麻醉学家之间更紧密的合作,并解决未解决的转化差距,如模型可解释性和跨模态数据融合。
相似文献
Front Med (Lausanne). 2025-6-2
Front Neurosci. 2025-6-3
Brain Behav. 2025-6
Front Microbiol. 2025-6-2
Photodiagnosis Photodyn Ther. 2025-5-28
J Multidiscip Healthc. 2025-6-11
本文引用的文献
Perioper Med (Lond). 2024-12-23
J Cardiothorac Vasc Anesth. 2024-5
Int J Ophthalmol. 2023-12-18
Anesth Analg. 2024-5-1
J Clin Monit Comput. 2024-4