Martelli Eugenio, Capoccia Laura, Di Francesco Marco, Cavallo Eduardo, Pezzulla Maria Giulia, Giudice Giorgio, Bauleo Antonio, Coppola Giuseppe, Panagrosso Marco
Division of Vascular Surgery, Department of Surgery, S Maria Goretti Hospital, 81100 Latina, Italy.
Department of General and Specialist Surgery, Sapienza University of Rome, 00161 Rome, Italy.
Biomimetics (Basel). 2024 Aug 1;9(8):465. doi: 10.3390/biomimetics9080465.
Artificial Intelligence (AI) made its first appearance in 1956, and since then it has progressively introduced itself in healthcare systems and patients' information and care. AI functions can be grouped under the following headings: Machine Learning (ML), Deep Learning (DL), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Computer Vision (CV). Biomimetic intelligence (BI) applies the principles of systems of nature to create biological algorithms, such as genetic and neural network, to be used in different scenarios. Chronic limb-threatening ischemia (CLTI) represents the last stage of peripheral artery disease (PAD) and has increased over recent years, together with the rise in prevalence of diabetes and population ageing. Nowadays, AI and BI grant the possibility of developing new diagnostic and treatment solutions in the vascular field, given the possibility of accessing clinical, biological, and imaging data. By assessing the vascular anatomy in every patient, as well as the burden of atherosclerosis, and classifying the level and degree of disease, sizing and planning the best endovascular treatment, defining the perioperative complications risk, integrating experiences and resources between different specialties, identifying latent PAD, thus offering evidence-based solutions and guiding surgeons in the choice of the best surgical technique, AI and BI challenge the role of the physician's experience in PAD treatment.
人工智能(AI)于1956年首次出现,从那时起它逐渐在医疗系统以及患者信息和护理中崭露头角。人工智能的功能可分为以下几类:机器学习(ML)、深度学习(DL)、人工神经网络(ANN)、卷积神经网络(CNN)、计算机视觉(CV)。仿生智能(BI)应用自然系统的原理来创建生物算法,如遗传算法和神经网络,以用于不同场景。慢性肢体威胁性缺血(CLTI)是外周动脉疾病(PAD)的最后阶段,近年来随着糖尿病患病率的上升和人口老龄化而增加。如今,鉴于能够获取临床、生物学和成像数据,人工智能和仿生智能为在血管领域开发新的诊断和治疗解决方案提供了可能性。通过评估每个患者的血管解剖结构以及动脉粥样硬化的负担,对疾病的程度和级别进行分类,确定最佳血管内治疗的尺寸和规划,确定围手术期并发症风险,整合不同专业之间的经验和资源,识别潜在的外周动脉疾病,从而提供基于证据 的解决方案并指导外科医生选择最佳手术技术,人工智能和仿生智能对医生经验在PAD治疗中的作用提出了挑战。