Springuel Pierre, Hood Tiffany, Slingsby Fern, Schmidberger Timo, Bevan Nicola, Dianat Noushin, Hengst Julia, Rafiq Qasim A
Department of Biochemical Engineering, University College London, London, United Kingdom.
Product Excellence Bioreactor Technologies, Sartorius Stedim UK Limited, Epsom, United Kingdom.
Front Bioeng Biotechnol. 2025 Jun 2;13:1593895. doi: 10.3389/fbioe.2025.1593895. eCollection 2025.
The expansion of autologous chimeric antigen receptor (CAR) T cells to reach a therapeutic dose significantly prolongs manufacturing time and increases overall costs. The common use of animal- or human-derived serum in T cell expansion culture media further contributes to process variability, costs and introduces additional safety concerns. To address these challenges, this study focused on intensifying CAR-T cell expansion using perfusion processes in xeno-free (XF) and serum-free (SF) culture medium. The impacts of alternative tangential flow (ATF) perfusion rates, perfusion start times and donor variability were evaluated using a Design of Experiments (DOE) approach in the Ambr 250 High-Throughput Perfusion stirred-tank bioreactor. This allowed the identification of optimal combinations of perfusion parameters on a per-donor basis, enabling 4.5-fold improvements in final cell yields and over 50% reductions in the expansion time required to reach a representative CAR-T dose compared to a fed-batch process. Subsequent process development then established an adaptive perfusion strategy enabling 130 ± 9.7-fold expansions to achieve final cell densities of 33.5 ± 3 × 10 cells/mL while reducing medium requirements by 11% without compromising CAR-T cell quality attributes compared to static well-plate cultures. Harvested cells predominantly expressed naïve and central memory markers, low levels of exhaustion markers, and maintained cytotoxicity and cytokine release . This study demonstrates the potential of optimising and adapting perfusion strategies in XF/SF-culture medium to enhance CAR-T cell yields, shorten expansion times and reduce medium consumption while addressing patient variability in clinical manufacturing. Key considerations for future implementation and improvement of adaptive perfusion feeds for clinical CAR-T manufacturing are also discussed.
自体嵌合抗原受体(CAR)T细胞扩增至治疗剂量会显著延长生产时间并增加总成本。在T细胞扩增培养基中普遍使用动物或人源血清,进一步导致了工艺变异性、成本增加,并带来了额外的安全问题。为应对这些挑战,本研究聚焦于在无血清(SF)和无动物源(XF)培养基中使用灌注工艺强化CAR-T细胞扩增。在安捷伦Ambr 250高通量灌注搅拌罐生物反应器中,采用实验设计(DOE)方法评估了交替切向流(ATF)灌注速率、灌注起始时间和供体变异性的影响。这使得能够基于每个供体确定灌注参数的最佳组合,与分批补料工艺相比,最终细胞产量提高了4.5倍,达到代表性CAR-T剂量所需的扩增时间减少了50%以上。随后的工艺开发建立了一种适应性灌注策略,能够实现130±9.7倍的扩增,达到33.5±3×10个细胞/mL的最终细胞密度,同时与静态孔板培养相比,培养基需求量减少了11%,且不影响CAR-T细胞的质量属性。收获的细胞主要表达幼稚和中央记忆标志物,耗竭标志物水平较低,并保持细胞毒性和细胞因子释放。本研究证明了在XF/SF培养基中优化和调整灌注策略以提高CAR-T细胞产量、缩短扩增时间和减少培养基消耗的潜力,同时解决了临床生产中患者的变异性问题。还讨论了临床CAR-T制造中适应性灌注补料未来实施和改进的关键考虑因素。