文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

抗菌治疗中的微纳机器人:应对抗生素耐药性挑战

Micro/nanorobots in antimicrobial therapy: Addressing challenges of antibiotic resistance.

作者信息

Chen Xutong, Li Yong, Wang Chunhua, Chen Zhiqiang, Xu Zhijie, Xia Fada, Yan Yuanliang, Gao Ming

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Mater Today Bio. 2025 May 31;32:101936. doi: 10.1016/j.mtbio.2025.101936. eCollection 2025 Jun.


DOI:10.1016/j.mtbio.2025.101936
PMID:40530044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12171819/
Abstract

Antibiotic resistance has emerged as a critical global health challenge, particularly when bacteria form biofilms that render conventional antimicrobial treatments markedly less effective. Bacteria residing within biofilm exhibit increased resistance to antimicrobial agents and host immune defenses, complicating treatment and contributing to recurrent infections. Antimicrobial micro- and nanorobots (MNRs) have garnered significant attention as a promising strategy to combat drug-resistant bacteria and biofilms, owing to their exceptional motility, precise targeting, and improved penetration capabilities. Despite their potential, challenges related to biocompatibility, imaging integration, and clinical translation remain unresolved. This review summarizes the latest developments in the therapy of micro/nanorobots for antimicrobial therapy, emphasizing innovative strategies for bacterial eradication and biofilm disruption while addressing the technical hurdles and exploring future research directions.

摘要

抗生素耐药性已成为一项严峻的全球健康挑战,尤其是当细菌形成生物膜时,这会使传统抗菌治疗的效果显著降低。存在于生物膜内的细菌对抗菌剂和宿主免疫防御的抵抗力增强,使治疗变得复杂并导致反复感染。抗菌微型和纳米机器人(MNR)作为对抗耐药细菌和生物膜的一种有前景的策略已引起广泛关注,这得益于它们出色的运动能力、精确的靶向性和更强的穿透能力。尽管它们具有潜力,但与生物相容性、成像整合以及临床转化相关的挑战仍未得到解决。本综述总结了用于抗菌治疗的微型/纳米机器人疗法的最新进展,强调了根除细菌和破坏生物膜的创新策略,同时解决技术障碍并探索未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/2d6fb287e8c3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/95eb2843d27f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/27fe7ae2a50f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/d5f3d5d0e010/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/4241ca9f1eab/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/2d6fb287e8c3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/95eb2843d27f/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/27fe7ae2a50f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/d5f3d5d0e010/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/4241ca9f1eab/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/12171819/2d6fb287e8c3/gr4.jpg

相似文献

[1]
Micro/nanorobots in antimicrobial therapy: Addressing challenges of antibiotic resistance.

Mater Today Bio. 2025-5-31

[2]
Commercial utilization of bacteriocins: tackling challenges and exploring their potential as alternatives to antibiotics.

Future Microbiol. 2025-6-19

[3]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[4]
Respiratory tract antimicrobial peptides more effectively killed multiple methicillin-resistant and nontypeable isolates after disruption from biofilm residence.

Microbiol Spectr. 2025-6-18

[5]
Emerging nanoparticle-based strategies to provide therapeutic benefits for stroke.

Neural Regen Res. 2025-6-19

[6]
Liposome-encapsulated antibiotics and biosurfactants: an effective strategy to boost biofilm eradication in cooling towers.

Microb Cell Fact. 2025-6-18

[7]
Unveiling the Antibacterial Activity Against Staphylococcus aureus of Slime Molds: The Role of Symbiotic Bacteria.

J Basic Microbiol. 2025-6-19

[8]
Persulfate salts to combat bacterial resistance in the environment through antibiotic degradation and biofilm disruption.

Water Res. 2025-6-1

[9]
exploits host- and bacterial-derived β-alanine for replication inside host macrophages.

Elife. 2025-6-19

[10]
Controversies and clinical unknowns in the use of PARP inhibitors in ovarian cancer.

Ther Adv Med Oncol. 2025-6-14

本文引用的文献

[1]
Micro- and Nano-Bots for Infection Control.

Adv Mater. 2025-6

[2]
NIR light-driven nanomotor with cascade photodynamic therapy for MRSA biofilm eradication and diabetic wound healing.

Theranostics. 2025-2-24

[3]
Mucus-penetrating nanomotor system strengthens mucosal immune response to in situ bacterial vaccine against severe bacterial pneumonia.

Biomaterials. 2025-9

[4]
Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies.

Mater Today Bio. 2024-11-22

[5]
Miniature Robots for Battling Bacterial Infection.

ACS Nano. 2024-11-26

[6]
Photodynamic Therapy: Past, Current, and Future.

Int J Mol Sci. 2024-10-21

[7]
Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections.

Mater Today Bio. 2024-9-16

[8]
Nanorobots to Treat Infection.

Research (Wash D C). 2024-8-15

[9]
Prevalence of plasmid-mediated quinolone resistance genes and biofilm formation in different species of quinolone-resistant clinical Shigella isolates: a cross-sectional study.

Eur J Med Res. 2024-8-14

[10]
Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.

Commun Chem. 2024-8-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索