Zhao Dan-Yang, Zhou Shengyang, Huang Yan-Fei, Huang Han-Cheng, Yang Hongli, Liu Han, Lin Hao, Zhong Gan-Ji, Li Zhong-Ming
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
J Phys Chem B. 2025 Jul 3;129(26):6721-6730. doi: 10.1021/acs.jpcb.5c02193. Epub 2025 Jun 18.
The solvation structure of Li plays a critical role in ion transport and electrochemical reactions in lithium-ion battery (LIB) electrolytes. To investigate the solvation structure and coordination number of Li, we examined the impact of force field parameters using molecular dynamics simulations. In the system with mixed carbonates and lithium hexafluorophosphate (LiPF), the total coordination number of Li is found to be primarily determined by nonbonded parameters of Li. The polarity of carbonate partial charges significantly affects the Li solvation structure, and scaling down the partial charges promotes ion association. By simulating the solvation structure of carbonate electrolyte between two layers of polyethylene (PE) short chains as a model of separator nanopore, it is intriguingly found that linear carbonates tend to accumulate on the PE surface, increasing ion concentration and enhancing ion aggregation. Experimental measurements confirm that the nanoporous structure on the surface of the separator tends to shrink and close during battery cycling, and further influence the Li solvation structure as simulation exhibits and further impact the service performance of LIBs. This provides a new insight into the electrolyte-separator interaction on ion transport and electrochemical reactions.
锂的溶剂化结构在锂离子电池(LIB)电解质的离子传输和电化学反应中起着关键作用。为了研究锂的溶剂化结构和配位数,我们使用分子动力学模拟研究了力场参数的影响。在含有混合碳酸盐和六氟磷酸锂(LiPF)的体系中,发现锂的总配位数主要由锂的非键参数决定。碳酸盐部分电荷的极性显著影响锂的溶剂化结构,减小部分电荷会促进离子缔合。通过模拟两层聚乙烯(PE)短链之间的碳酸盐电解质的溶剂化结构作为隔膜纳米孔的模型,有趣地发现线性碳酸盐倾向于在PE表面聚集,增加离子浓度并增强离子聚集。实验测量证实,隔膜表面的纳米多孔结构在电池循环过程中倾向于收缩和闭合,并如模拟所示进一步影响锂的溶剂化结构,进而影响LIB的使用性能。这为电解质-隔膜在离子传输和电化学反应中的相互作用提供了新的见解。