Hanafi Muhammad Garry Syahrizal, Utsuno Hajime, Namiki Shuuji, Aoki Nanami, Saitoh Hisako, Minegishi Saki, Yamada Sayaka, Makino Yohsuke, Iwase Hirotaro, Sakurada Koichi
Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Int J Legal Med. 2025 Jun 18. doi: 10.1007/s00414-025-03542-x.
Facial soft tissue thickness (FSTT) is essential for forensic facial approximation. Although its correlations with age, sex, and body mass index (BMI) are well documented, the potential correlations between FSTT and various orthodontic profiles-such as cephalic index (CI), skeletal class (SC), Tweed and Northwestern analyses-remain unexplored collectively. This study examined these correlations and their impact on FSTT prediction accuracy.
We analyzed 103 postmortem computed tomography datasets from Japanese cadavers aged 18-86 years. Moderate-to-high multicollinearity was identified among orthodontic profile variables (SC, Tweed, and Northwestern) and addressed using principal component analysis (PCA), yielding two principal components (PC1 and PC2). Predictive formulas were constructed incorporating age, sex, BMI, CI, PC1, and PC2. To evaluate model performance, we conducted two comparative approaches: (1) comparing root mean squared error (RMSE) and mean absolute error (MAE) from the PCA-based regression model with those derived from holdout dataset's BMI-based mean estimates, and (2) with primary dataset's baseline regression model including only age, sex, and BMI, across all landmarks.
PCA reduced multicollinearity, retaining 77% of total data variability. Based on the two comparative approaches, the PCA-based regression model demonstrated marginal improvements in predictive accuracy, as indicated by slightly lower RMSE and MAE across most landmarks. It indicates a limited yet consistent benefit of using orthodontic profiles for enhancing model accuracy beyond basic demographic predictors.
The inclusion of orthodontic profiles demonstrated modest improvements in predictive accuracy and may enhance the interpretive value of FSTT predictive models in forensic contexts.
Not applicable.
面部软组织厚度(FSTT)对于法医面部复原至关重要。尽管其与年龄、性别和体重指数(BMI)之间的相关性已有充分记录,但FSTT与各种正畸特征(如头指数(CI)、骨骼类型(SC)、Tweed分析和西北分析)之间的潜在相关性尚未得到全面探索。本研究考察了这些相关性及其对FSTT预测准确性的影响。
我们分析了103例年龄在18 - 86岁的日本尸体的死后计算机断层扫描数据集。正畸特征变量(SC、Tweed分析和西北分析)之间存在中度至高度的多重共线性,并使用主成分分析(PCA)进行处理,得到两个主成分(PC1和PC2)。构建了包含年龄、性别、BMI、CI、PC1和PC2的预测公式。为了评估模型性能,我们进行了两种比较方法:(1)将基于PCA的回归模型的均方根误差(RMSE)和平均绝对误差(MAE)与来自保留数据集的基于BMI的平均估计值进行比较;(2)在所有地标点上,将其与仅包含年龄、性别和BMI的原始数据集的基线回归模型进行比较。
PCA降低了多重共线性,保留了77%的数据总变异性。基于这两种比较方法,基于PCA的回归模型在预测准确性上有轻微提高,大多数地标点的RMSE和MAE略低。这表明在基本人口统计学预测因素之外,使用正畸特征来提高模型准确性有一定但一致的益处。
纳入正畸特征在预测准确性上有适度提高,可能会增强FSTT预测模型在法医背景下的解释价值。
不适用。