Sun Miaomiao, Bialasek Maciej, Mayoux Maud, Lin Meng-Syuan, Buck Alicia, Marszałek Ilona, Taciak Bartłomiej, Bühler Marcel, Górczak Małgorzata, Kucharzewska Paulina, Kurpiel Daria, Siemińska Małgorzata, Nowakowska Julia, Brancewicz Jan, Gabrusiewicz Konrad, Lipiński Waldemar, Pfammatter Sibylle, Pascolo Steve, Hutter Gregor, Bodnar Lubomir, Snijder Berend, Regli Luca, Weller Michael, Baumgartner Martin, Tugues Sonia, Rygiel Tomasz P, Krol Magdalena, Weiss Tobias
Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland.
Cellis AG, 8002 Zurich, Switzerland.
Sci Transl Med. 2025 Jun 18;17(803):eadr4058. doi: 10.1126/scitranslmed.adr4058.
The treatment of solid tumors faces substantial hurdles because of inadequate drug delivery and the immunosuppressive tumor microenvironment. To address these challenges, we developed a therapeutic platform using macrophages loaded with ferritin-drug conjugates, referred to as macrophage-drug conjugates (MDC), and applied it to glioblastoma, an immunologically cold solid tumor. MDC loaded with ferritin-conjugated monomethyl auristatin E enabled efficient, cell contact-dependent transfer of the payload by a mechanism involving transfer of iron-binding proteins, from either mouse or human macrophages preferentially into glioma cells. This targeted delivery and therapeutic efficacy was demonstrated across in vitro coculture systems, ex vivo assays using dissociated glioblastoma patient tumor samples, and in vivo using orthotopic glioblastoma mouse models, all while maintaining a favorable preclinical safety profile evidenced by minimal systemic toxicity and localized drug biodistribution. Beyond direct tumor cell killing leading to significant tumor regression and prolonged survival in these models, MDC therapy reprogrammed the immunosuppressive tumor microenvironment. Immune profiling by spectral flow cytometry revealed enhanced infiltration and activation of cytotoxic T lymphocytes and B lymphocytes while reducing immunosuppressive regulatory T cells. This culminated in a robust, durable, T cell-dependent antitumor immune response, the necessity of which was confirmed through studies in immunodeficient mouse models and by lymphocyte depletion, and which conferred protection against tumor rechallenge. The combined cytotoxic and immunomodulatory effects highlight the potential of MDC therapy as a promising strategy for glioblastoma treatment and support its further clinical development.
由于药物递送不足以及免疫抑制性肿瘤微环境,实体瘤的治疗面临着巨大障碍。为应对这些挑战,我们开发了一种治疗平台,该平台利用负载铁蛋白-药物偶联物的巨噬细胞,即巨噬细胞-药物偶联物(MDC),并将其应用于胶质母细胞瘤,这是一种免疫原性较低的实体瘤。负载铁蛋白偶联单甲基澳瑞他汀E的MDC能够通过一种涉及铁结合蛋白转移的机制,实现有效、细胞接触依赖性的有效载荷转移,铁结合蛋白从小鼠或人类巨噬细胞优先转移到胶质瘤细胞中。这种靶向递送和治疗效果在体外共培养系统、使用解离的胶质母细胞瘤患者肿瘤样本的体外试验以及使用原位胶质母细胞瘤小鼠模型的体内试验中均得到了证实,同时保持了良好的临床前安全性,表现为最小的全身毒性和局部药物生物分布。在这些模型中,除了直接杀死肿瘤细胞导致显著的肿瘤消退和延长生存期外,MDC疗法还对免疫抑制性肿瘤微环境进行了重编程。通过光谱流式细胞术进行的免疫分析显示,细胞毒性T淋巴细胞和B淋巴细胞的浸润和激活增强,同时免疫抑制性调节性T细胞减少。这最终导致了强大、持久、T细胞依赖性的抗肿瘤免疫反应,通过在免疫缺陷小鼠模型中的研究和淋巴细胞清除证实了其必要性,并且这种反应赋予了对肿瘤再挑战的保护作用。细胞毒性和免疫调节作用的结合突出了MDC疗法作为胶质母细胞瘤治疗的一种有前景策略的潜力,并支持其进一步的临床开发。