Mihalyi-Koch Willa, Dai Zhenbang, Sun Meng-Jia, Park Jae Yong, Lafayette David P, Sanders Kyana M, Guzei Ilia A, Wright John C, Huang Libai, Rappe Andrew M, Jin Song
Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
J Am Chem Soc. 2025 Jul 2;147(26):23079-23089. doi: 10.1021/jacs.5c06227. Epub 2025 Jun 18.
Ferroelectric Rashba semiconductors are a rare class of multifunctional materials promising for spin-orbitronics due to the possibility of electrically switchable spin textures. Hybrid organic-inorganic metal halide perovskites offer exceptional tunability that can be harnessed to target noncentrosymmetry; however, the complex interactions between organic and inorganic components are not rationally understood. Here, we use an asymmetric spacer cation with a strong molecular dipole moment (2-fluorobenzylammonium, 2FBZ) and increase the intrinsic quantum well thickness to > 1 to synthesize three new polar 2D lead iodide perovskites (2FBZ)(A)PbI with A = methylammonium (MA) or formamidinium (FA) and = 2, 3. Single-crystal structure analysis reveals the symmetry of these crystal structures and substantial structural distortions, which enable Rashba and Dresselhaus band splitting and persistent spin texture, confirmed by DFT calculations. Measurements of the resulting symmetry-dependent properties, such as second harmonic generation, switchable photovoltaic effect, ferroelectric polarization, and low temperature photoluminescence show switchable ferroelectric semiconducting properties. These results introduce a general chemical design strategy toward polar symmetry by exploiting the complex interplay between asymmetric spacer cations and A-site cations in quasi-2D ( > 1) halide perovskites to realize new classes of multifunctional materials for future spin-orbitronic applications.
铁电 Rashba 半导体是一类罕见的多功能材料,由于其电可切换自旋纹理的可能性,在自旋电子学领域具有广阔前景。有机 - 无机杂化金属卤化物钙钛矿具有出色的可调性,可用于实现非中心对称性;然而,有机和无机组分之间的复杂相互作用尚未得到合理理解。在此,我们使用具有强分子偶极矩的不对称间隔阳离子(2 - 氟苄基铵,2FBZ),并将本征量子阱厚度增加到大于1,以合成三种新的极性二维碘化铅钙钛矿(2FBZ)(A)PbI₃,其中A = 甲铵(MA)或甲脒(FA)且 = 2, 3。单晶结构分析揭示了这些晶体结构的 对称性以及大量结构畸变,这使得 Rashba 和 Dresselhaus 能带分裂以及持续的自旋纹理成为可能,密度泛函理论计算证实了这一点。对由此产生的与对称性相关的性质的测量,如二次谐波产生、可切换光伏效应、铁电极化和低温光致发光,显示出可切换的铁电半导体性质。这些结果通过利用准二维( > 1)卤化物钙钛矿中不对称间隔阳离子与A位阳离子之间的复杂相互作用,引入了一种针对极性对称性的通用化学设计策略,以实现用于未来自旋电子学应用的新型多功能材料。