Suppr超能文献

用于睡眠分期的贴片式可穿戴心电图和阻抗式呼吸描记术:一种多模态深度学习方法。

Patch-type wearable electrocardiography and impedance pneumography for sleep staging: A multi-modal deep learning approach.

作者信息

Lee Sunghan, Park Ung, Yun Suyeon, Park Goeun, Cho Sung Pil, Kim Kyung Min, Jeong In Cheol

机构信息

Cerebrovascular Disease Research Center, Hallym University, Chuncheon, 24252, Republic of Korea.

Cerebrovascular Disease Research Center, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, 24252, Republic of Korea.

出版信息

Comput Biol Med. 2025 Sep;195:110452. doi: 10.1016/j.compbiomed.2025.110452. Epub 2025 Jun 17.

Abstract

Sleep staging is critical for investigating sleep quality and detecting disorders. Polysomnography (PSG) remains the gold standard, but is costly and impractical for routine monitoring. This study evaluates the feasibility of a patch-type wearable device using single-lead electrocardiography (ECG) and impedance pneumography (IPG) for multi-stage sleep classification. Data from 92 patients were collected using a wearable ECG-IPG device. Preprocessing entailed bandpass filtering, segmentation into 5-min windows with 30-s overlaps, and feature extraction in time, frequency, and nonlinear domains. Three classification methods were tested and validated using 5-fold patient-independent cross-validation across 2-class (Wake, Sleep), 3-class (Wake, rapid eye movement (REM), and Non-REM), and 4-class (Wake, REM, N1, and N2) tasks. The combined approach achieved the highest accuracy in the 2-class task (accuracy: 83.6%, area under the receiver operating characteristic (AUROC): 86.0%). For 3- and 4-class tasks, feature-based methods outperformed the others, with the RCNN achieving the best F1-score (0.618 in 3-class and 0.552 in 4-class). Modality analysis revealed that IPG + R-R interval (RRI) + motion sensors provided the highest performance, with IPG and RRI identified as the most effective in sleep staging. Feature reduction using maximum relevance and minimum redundancy (mRMR) identified the top 15 features that retained 99% of the performance of the full feature set while reducing the training time by 73%. These findings highlight the feasibility of a portable ECG-IPG system for sleep staging, balancing accuracy and computational efficiency. The proposed approach has the potential to enable continuous sleep monitoring and personalized health management in real-world applications.

摘要

睡眠分期对于研究睡眠质量和检测睡眠障碍至关重要。多导睡眠图(PSG)仍然是金标准,但成本高昂且不适用于常规监测。本研究评估了一种使用单导联心电图(ECG)和阻抗式呼吸描记法(IPG)的贴片式可穿戴设备用于多阶段睡眠分类的可行性。使用可穿戴ECG-IPG设备收集了92名患者的数据。预处理包括带通滤波、分割为重叠30秒的5分钟窗口以及在时间、频率和非线性域中进行特征提取。使用5折患者独立交叉验证对三种分类方法进行了测试和验证,涉及二分类(清醒、睡眠)、三分类(清醒、快速眼动(REM)和非快速眼动)和四分类(清醒、REM、N1和N2)任务。联合方法在二分类任务中取得了最高准确率(准确率:83.6%,受试者工作特征曲线下面积(AUROC):86.0%)。对于三分类和四分类任务,基于特征的方法优于其他方法,RCNN获得了最佳F1分数(三分类中为0.618,四分类中为0.552)。模态分析表明,IPG + R-R间期(RRI)+运动传感器提供了最高性能,其中IPG和RRI被确定为在睡眠分期中最有效的。使用最大相关性和最小冗余(mRMR)进行特征约简,确定了前15个特征,这些特征在保留完整特征集99%性能的同时,将训练时间减少了73%。这些发现突出了便携式ECG-IPG系统用于睡眠分期的可行性,兼顾了准确性和计算效率。所提出的方法有可能在实际应用中实现连续睡眠监测和个性化健康管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验