Suppr超能文献

将深度学习与心电图、心率变异性和人口统计学数据相结合,以改进心房颤动的检测。

Integrating deep learning with ECG, heart rate variability and demographic data for improved detection of atrial fibrillation.

作者信息

Rawshani Araz, Rawshani Aidin, Smith Gustav, Boren Jan, Bhatt Deepak L, Börjesson Mats, Engdahl Johan, Kelly Peter, Louca Antros, Ramunddal Truls, Andersson Erik, Omerovic Elmir, Mandalenakis Zacharias, Gupta Vibha

机构信息

Departement of Clinical & Molecular Medicine, Institute of Medicine, Gothenburg, Sweden.

University of Gothenburg Institute of Medicine, Goteborg, Sweden.

出版信息

Open Heart. 2025 Mar 31;12(1):e003185. doi: 10.1136/openhrt-2025-003185.

Abstract

BACKGROUND

Atrial fibrillation (AF) is a common but often undiagnosed condition, increasing the risk of stroke and heart failure. Early detection is crucial, yet traditional methods struggle with AF's transient nature. This study investigates how augmenting ECG data with heart rate variability (HRV) and demographic data (age and sex) can improve AF detection.

METHODS

We analysed 35 634 12-lead ECG recordings from three public databases (China Physiological Signal Challenge-Extra, PTB-XL and Georgia), each with physician-validated AF labels. A range of convolutional neural network models, including AlexNet, VGG-16, ResNet and transformers, were tested for AF prediction, enriched with HRV and demographic data to explore the effectiveness of the multimodal approach. Each data modality (ECG, HRV and demographic) was assessed for its contribution to model performance using fivefold cross-validation. Performance improvements were evaluated across key metrics, and saliency maps were generated to provide further insights into model behaviour and identify critical features in AF detection.

RESULTS

Integrating HRV and demographic data with ECG substantially improved performance. AlexNet and VGG-16 outperformed more complex models, achieving AUROC of 0.9617 (95% CI 0.95 to 0.97) and 0.9668 (95% CI 0.96 to 0.97), respectively. Adding HRV data showed the most significant improvement in sensitivity, with AlexNet increasing from 0.9117 to 0.9225 and VGG-16 from 0.9216 to 0.9225. Combining both HRV and demographic data led to further improvements, with AlexNet achieving a sensitivity of 0.9225 (up from 0.9192 with HRV) and VGG-16 reaching 0.9113 (up from 0.9097 with HRV). The combination of HRV and demographic data resulted in the highest gains in sensitivity and area under the receiver operating characteristic curve. Saliency maps confirmed the models identified key AF features, such as the absence of the P-wave, validating the multimodal approach.

CONCLUSIONS

AlexNet and VGG-16 excelled in AF detection, with HRV data improving sensitivity, and demographic data providing additional benefits. These results highlight the potential of multimodal approaches, pending further clinical validation.

摘要

背景

心房颤动(AF)是一种常见但常未被诊断的疾病,会增加中风和心力衰竭的风险。早期检测至关重要,但传统方法难以应对AF的短暂性。本研究调查了如何通过心率变异性(HRV)和人口统计学数据(年龄和性别)增强心电图数据来改善AF检测。

方法

我们分析了来自三个公共数据库(中国生理信号挑战赛额外数据集、PTB-XL和佐治亚州数据集)的35634份12导联心电图记录,每个数据库都有经过医生验证的AF标签。测试了一系列卷积神经网络模型,包括AlexNet、VGG-16、ResNet和Transformer,用于AF预测,并使用HRV和人口统计学数据进行增强,以探索多模态方法的有效性。使用五折交叉验证评估每种数据模态(心电图、HRV和人口统计学)对模型性能的贡献。通过关键指标评估性能改进情况,并生成显著性图,以进一步深入了解模型行为并识别AF检测中的关键特征。

结果

将HRV和人口统计学数据与心电图相结合显著提高了性能。AlexNet和VGG-16的表现优于更复杂的模型,分别实现了0.9617(95%CI0.95至0.97)和0.9668(95%CI0.96至0.97)的曲线下面积(AUROC)。添加HRV数据在敏感性方面显示出最显著的改善,AlexNet从0.9117提高到0.9225,VGG-16从0.9216提高到0.9225。同时结合HRV和人口统计学数据带来了进一步的改善,AlexNet的敏感性达到0.9225(HRV单独使用时为0.9192),VGG-16达到0.9113(HRV单独使用时为0.9097)。HRV和人口统计学数据的组合在敏感性和受试者工作特征曲线下面积方面取得了最大的提升。显著性图证实模型识别出了关键的AF特征,如P波缺失,验证了多模态方法。

结论

AlexNet和VGG-16在AF检测方面表现出色,HRV数据提高了敏感性,人口统计学数据提供了额外的益处。这些结果突出了多模态方法的潜力,有待进一步的临床验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b430/11962809/d71ad2038eab/openhrt-12-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验