Suppr超能文献

不同黏度壳聚糖/氧化石墨烯/明胶水凝胶珠对废水中甲基橙的吸附作用

Adsorption of methyl orange using different viscosity chitosan/graphene oxide/gelatin hydrogel beads in wastewater.

作者信息

Bai Yuan, Fan Pengfei, Jing Zongxian, Gan Xinyu, Hu Kexin, Zheng Haoyu, Shen Xintong

机构信息

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070 Lanzhou, People's Republic of China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, 730070 Lanzhou, People's Republic of China.

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070 Lanzhou, People's Republic of China.

出版信息

Int J Biol Macromol. 2025 Jul;318(Pt 4):145244. doi: 10.1016/j.ijbiomac.2025.145244. Epub 2025 Jun 16.

Abstract

Chitosan (CS) demonstrates significant potential in addressing water contamination challenges. In this study, high viscosity (H-CS, >583 kDa), medium viscosity (M-CS, 265-583 kDa), and low viscosity (L-CS, <265 kDa) of chitosan (CS) were used. Prepared graphene oxide (GO) and gelatin via a neutralization-precipitation method. CSGO hydrogel beads was developed through crosslinking CS and GO composite using glutaraldehyde as a linking agent. Furthermore, the adsorption performance of the hydrogel beads for methyl orange (MO) was investigated. Component ratio analysis showed that at a GO to CS mass ratio of 1:10, the adsorption capacity of CSGO hydrogel beads increased by 18 % compared to CS hydrogel beads. CSGO hydrogel beads with different viscosities exhibited variations in pore size and porosity. Under the optimal conditions(pH 3, 60 °C, 10 mg/L MO concentration, 20 mg adsorbent), H-CSGO, M-CSGO, and L-CSGO achieved the maximum adsorption capacity of 257.20 mg/g, 238.87 mg/g and 242.68 mg/g, respectively. Adsorption kinetic followed the pseudo-second-order model and the Freundlich isotherm model, with adsorption governed by both intra- and external diffusion control steps. The primary mechanisms involved electrostatic attraction, hydrogen bonds, n-π interactions, and π-π stacking.

摘要

壳聚糖(CS)在应对水污染挑战方面具有巨大潜力。在本研究中,使用了高粘度(H-CS,>583 kDa)、中粘度(M-CS,265 - 583 kDa)和低粘度(L-CS,<265 kDa)的壳聚糖(CS)。通过中和沉淀法制备氧化石墨烯(GO)和明胶。以戊二醛作为交联剂,通过交联CS与GO复合材料制备了CSGO水凝胶珠。此外,研究了水凝胶珠对甲基橙(MO)的吸附性能。成分比例分析表明,当GO与CS的质量比为1:10时,CSGO水凝胶珠的吸附容量比CS水凝胶珠提高了18%。不同粘度的CSGO水凝胶珠在孔径和孔隙率方面存在差异。在最佳条件下(pH 3、60°C、MO浓度10 mg/L、吸附剂20 mg),H-CSGO、M-CSGO和L-CSGO的最大吸附容量分别达到257.20 mg/g、238.87 mg/g和242.68 mg/g。吸附动力学遵循准二级模型和Freundlich等温线模型,吸附受内部和外部扩散控制步骤共同影响。主要机制包括静电吸引、氢键、n-π相互作用和π-π堆积。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验