Farzad Maryam, MacDermid Joy, Ferreira Louis, Tutunea-Fatan Ovidiu-Remus, Gorski Adam, Rattan Ravneet Singh, Hussein Naji, Cuypers Steven
Hand and Upper Limb Center, St. Joseph's Health Center, London, ON, Canada; School of Physical Therapy, Department of Health and Rehabilitation Sciences, Western University, London, ON, Canada; School of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Physical Therapy and Surgery, Western University, London, ON, Canada; Clinical Research Lab, Hand and Upper Limb Center, St. Joseph's Health Center, London, ON, Canada; Rehabilitation Science McMaster University, Hamilton, ON, Canada.
J Hand Ther. 2025 Apr-Jun;38(2):378-387. doi: 10.1016/j.jht.2025.04.001. Epub 2025 Jun 17.
Carpometacarpal (CMC) osteoarthritis often requires orthotic intervention to reduce pain and improve function. Traditional orthosis fabrication typically demands in-person clinical visits, which can be a barrier to care.
To develop and validate a fully remote workflow for fabricating custom orthoses using mobile 3D scanning, web-based assessment, and 3D printing technologies for patients with CMC osteoarthritis.
Pilot validation study.
A five-step workflow was created: (1) a web-based application ("Hand Scan") for assessing pain, sensory function, and range of motion; (2) mobile 3D hand scanning using smartphone cameras, with scans processed in Agisoft Metashape; (3) digital joint repositioning using finite element analysis software; (4) orthosis design using parametric modeling; and (5) fabrication using 3D printing with Orfit's low-temperature polycaprolactone filament. Five patients with CMC osteoarthritis were recruited. The application's usability was tested via cognitive interviews. Mobile scanning accuracy was validated against high-precision photogrammetry, and surface deviations of the 3D-printed orthoses were compared with traditional thermoplastic models.
The Hand Scan app demonstrated strong content validity. Mobile scans showed a mean absolute deviation of 0.93 mm (SD = 0.61 mm). Joint repositioning yielded a mean deviation of 0.87 mm. The 3D-printed orthoses demonstrated a better fit than thermoplastic models, with a mean surface deviation of 0.95 mm compared to 1.96 mm. The maximum deviation was 3.17 mm for 3D-printed and 5.81 mm for traditional orthoses.
This remote orthotic fabrication workflow is accurate, feasible, and clinically applicable. It supports personalized orthosis design while reducing the need for in-person visits. The workflow has strong potential for telehealth and remote hand therapy services.
腕掌关节(CMC)骨关节炎通常需要矫形器干预以减轻疼痛并改善功能。传统的矫形器制作通常需要患者亲自到临床就诊,这可能成为获得治疗的障碍。
为患有CMC骨关节炎的患者开发并验证一种完全远程的工作流程,该流程使用移动3D扫描、基于网络的评估和3D打印技术来制作定制矫形器。
试点验证研究。
创建了一个五步工作流程:(1)一个用于评估疼痛、感觉功能和活动范围的基于网络的应用程序(“手部扫描”);(2)使用智能手机摄像头进行移动3D手部扫描,并在Agisoft Metashape中处理扫描数据;(3)使用有限元分析软件进行数字关节重新定位;(4)使用参数化建模进行矫形器设计;(5)使用Orfit的低温聚己内酯细丝通过3D打印进行制作。招募了5名患有CMC骨关节炎的患者。通过认知访谈测试了该应用程序的可用性。将移动扫描的准确性与高精度摄影测量法进行了验证,并将3D打印矫形器的表面偏差与传统热塑性模型进行了比较。
“手部扫描”应用程序显示出很强的内容效度。移动扫描的平均绝对偏差为0.93毫米(标准差=0.61毫米)。关节重新定位的平均偏差为0.87毫米。3D打印的矫形器比热塑性模型更贴合,平均表面偏差为0.95毫米,而热塑性模型为1.96毫米。3D打印矫形器的最大偏差为3.17毫米,传统矫形器为5.81毫米。
这种远程矫形器制作工作流程准确、可行且具有临床适用性。它支持个性化矫形器设计,同时减少了亲自就诊的需求。该工作流程在远程医疗和远程手部治疗服务方面具有很大潜力。