Herklotz V, Zhang M, Nascimento T, Kalfusová R, Lunerová J, Fuchs J, Harpke D, Huettel B, Pfordt U, Wissemann V, Kovařík A, Marques A, Ritz C M
Senckenberg Museum for Natural History Görlitz, Senckenberg-Leibniz Institution for Biodiversity and Earth System Research, Görlitz, Germany.
Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Nature. 2025 Jun 18. doi: 10.1038/s41586-025-09171-z.
Sexual reproduction relies on meiotic chromosome pairing to form bivalents, a process that is complicated in polyploids owing to the presence of multiple subgenomes. Uneven ploidy mostly results in sterility due to unbalanced chromosome pairing and segregation during meiosis. However, pentaploid dogroses (Rosa sect. Caninae; 2n = 5x = 35) achieve stable sexual reproduction through a unique mechanism: 14 chromosomes form bivalents and are transmitted biparentally, while the remaining 21 chromosomes are maternally inherited as univalents. Despite being studied for over a century, the role of centromeres in this process has remained unclear. Here we analyse haplotype-resolved chromosome-level genome assemblies for three pentaploid dogroses. Subgenome phasing revealed a bivalent-forming subgenome with two highly homozygous chromosome sets and three divergent subgenomes lacking homologous partners, therefore explaining their meiotic behaviour. Comparative analyses of chromosome synteny, phylogenetic relationships and centromere composition indicate that the subgenomes originated from two divergent clades of the genus Rosa. Pollen genome analysis shows that subgenomes from different evolutionary origins form bivalents, supporting multiple origins of dogroses and highlighting variation in subgenome contributions. We reveal that bivalent-forming centromeres are enriched with ATHILA retrotransposons, contrasting with larger tandem-repeat-based centromeres mainly found in univalents. This centromere structural bimodality possibly contributes to univalent drive during female meiosis. Our findings provide insights into the unique reproductive strategies of dogroses, advancing our understanding of genome evolution, centromere diversity and meiotic mechanisms in organisms with asymmetrical inheritance systems.
有性生殖依赖减数分裂染色体配对形成二价体,由于多倍体中存在多个亚基因组,这一过程在多倍体中较为复杂。倍性不均一大多会导致不育,因为减数分裂过程中染色体配对和分离不均衡。然而,五倍体蔷薇(蔷薇属犬蔷薇组;2n = 5x = 35)通过一种独特的机制实现了稳定的有性生殖:14条染色体形成二价体并双亲遗传,而其余21条染色体作为单价体母系遗传。尽管已经研究了一个多世纪,但着丝粒在这一过程中的作用仍不清楚。在这里,我们分析了三种五倍体蔷薇的单倍型解析染色体水平基因组组装。亚基因组定相揭示了一个形成二价体的亚基因组,有两个高度纯合的染色体组,以及三个缺乏同源配对的不同亚基因组,从而解释了它们的减数分裂行为。对染色体共线性、系统发育关系和着丝粒组成的比较分析表明,这些亚基因组起源于蔷薇属的两个不同进化分支。花粉基因组分析表明,来自不同进化起源的亚基因组形成二价体,支持了蔷薇的多起源,并突出了亚基因组贡献的差异。我们发现,形成二价体的着丝粒富含ATHILA逆转座子,这与主要在单价体中发现的基于串联重复序列的较大着丝粒形成对比。这种着丝粒结构的双峰性可能导致了雌性减数分裂过程中的单价体驱动。我们的研究结果为蔷薇独特的生殖策略提供了见解,增进了我们对不对称遗传系统生物中基因组进化、着丝粒多样性和减数分裂机制的理解。