Zhao Shuozhen, Balu Bhavya, Yu Zongxin, Miksis Michael J, Vlahovska Petia M
Northwestern University, Engineering Sciences and Applied Mathematics, Evanston, Illinois 60208, USA.
Phys Rev E. 2025 May;111(5-2):055404. doi: 10.1103/PhysRevE.111.055404.
Cells and cellular organelles are encapsulated by nanometrically thin membranes whose main component is a lipid bilayer. In the presence of electric fields, the ion-impermeable lipid bilayer acts as a capacitor and supports a potential difference across the membrane. We analyze the charging dynamics of a planar membrane separating bulk solutions with different electrolyte concentrations upon the application of an applied uniform dc electric field. The membrane is modeled as a zero-thickness capacitive interface. The evolution of the electric potential and ion distributions in the bulk are solved for using the Poisson-Nernst-Planck equations. Asymptotic solutions are derived in the limit of thin Debye layers and weak fields (compared to the thermal electric potential).
细胞和细胞器被纳米级薄的膜所包裹,其主要成分是脂质双层。在电场存在的情况下,离子不可渗透的脂质双层充当电容器,并支持膜两侧的电位差。我们分析了在施加均匀直流电场时,分隔具有不同电解质浓度的本体溶液的平面膜的充电动力学。该膜被建模为零厚度的电容性界面。使用泊松 - 能斯特 - 普朗克方程求解本体中电势和离子分布的演化。在薄德拜层和弱场(与热电势相比)的极限情况下推导出渐近解。