Bekkar Yahia, Lanez Elhafnaoui, Lanez Touhami, Bourougaa Lotfi, Adaika Aicha, Saada Zahra, Benine Aida
Laboratory of Valorization and Technology of Sahara Resources (VTRS), Faculty of Exact Sciences, Department of Chemistry, University of El Oued, El Oued, Algeria.
Faculty of Biology, Department of Cellular and Molecular Biology, University of El Oued, El Oued, Algeria.
Biotechnol Appl Biochem. 2025 Jun 18. doi: 10.1002/bab.70014.
This study investigates the potential of three synthesized ferrocenylmethylaniline derivatives (FMBA, FMAA, and FMA) as inhibitors of α-amylase, a key enzyme involved in the pathophysiology of diabetes. In vitro inhibition assays demonstrated that FMBA and FMAA exhibited significantly lower IC50 values of 9.23 and 11.23 µM, respectively, compared to 259 µM for the standard drug acarbose (ARE). Molecular docking studies supported these findings, with FMBA showing the highest binding affinity (∆G of -7.33 kcal/mol), followed by FMAA (-6.44 kcal/mol) and FMA (-5.85 kcal/mol), outperforming ARE (-4.88 kcal/mol). ADMET analysis suggested favorable pharmacokinetic and safety profiles for FMBA and FMAA, reinforcing their potential as viable drug candidates. To further assess the stability and dynamics of the enzyme-ligand interactions, molecular dynamics simulations were conducted, showing that FMBA and FMAA formed significantly more stable complexes with α-amylase compared to ARE, as indicated by low root mean square deviation (RMSD) values of 0.156 and 0.164 nm, respectively, compared to 0.359 nm for ARE. Root mean square fluctuation (RMSF) analysis revealed consistent stability at key active site residues. Additional analyses of radius of gyration (R) and solvent-accessible surface area (SASA) supported the compact and stable nature of the complexes. Frontier molecular orbital (FMO) analysis showed smaller HOMO-LUMO energy gaps for FMBA and FMAA, suggesting greater reactivity and potential biological activity. Molecular electrostatic potential (MEP) surface analysis highlighted key reactive sites, with high negative potential localized on the carbonyl groups of FMBA and FMAA, and high positive potential in regions favoring hydrogen bonding. These findings underscore the potential of FMBA and FMAA as promising antidiabetic agents and support their further development as therapeutic candidates.
本研究考察了三种合成的二茂铁基甲基苯胺衍生物(FMBA、FMAA和FMA)作为α-淀粉酶抑制剂的潜力,α-淀粉酶是糖尿病病理生理学中的一种关键酶。体外抑制试验表明,与标准药物阿卡波糖(ARE)的259 μM相比,FMBA和FMAA的IC50值显著更低,分别为9.23和11.23 μM。分子对接研究支持了这些发现,FMBA显示出最高的结合亲和力(∆G为 -7.33 kcal/mol),其次是FMAA(-6.44 kcal/mol)和FMA(-5.85 kcal/mol),优于ARE(-4.88 kcal/mol)。ADMET分析表明FMBA和FMAA具有良好的药代动力学和安全性,增强了它们作为可行药物候选物的潜力。为了进一步评估酶-配体相互作用的稳定性和动力学,进行了分子动力学模拟,结果表明,与ARE相比,FMBA和FMAA与α-淀粉酶形成的复合物明显更稳定,FMBA和FMAA的均方根偏差(RMSD)值分别为0.156和0.164 nm,而ARE为0.359 nm。均方根波动(RMSF)分析揭示了关键活性位点残基的一致稳定性。对回转半径(R)和溶剂可及表面积(SASA)的进一步分析支持了复合物的紧凑和稳定性质。前线分子轨道(FMO)分析表明FMBA和FMAA的HOMO-LUMO能隙较小表明其具有更高反应活性和潜在生物活性。分子静电势(MEP)表面分析突出了关键反应位点,FMBA和FMAA的羰基上具有高负电势,而在有利于氢键形成的区域具有高正电势这些发现强调了FMBA和FMAA作为有前景的抗糖尿病药物的潜力,并支持它们作为治疗候选物的进一步开发。