Choi Jong Seob, Park Hye-Bin, Lee Su Han, Kim Byunggik, Lee Jihoon, Sung Sang-Keun, Su Chia-Yi, Lee JuKyung, Jang Seongjun, Lee Yongjin, Lee Jung Hyun, Kim Hyung Jin, Kim Deok-Ho
Division of Advanced Materials Engineering, Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States.
Adv Healthc Mater. 2025 Jun 18:e2402057. doi: 10.1002/adhm.202402057.
This study advances bioelectronic platforms and cellular behavior analysis by enhancing the precision and scalability of nanopatterned membranes integrated with electrode arrays for real-time, high-throughput monitoring. By employing self-assembled monolayers (SAMs) and optimizing imprinting parameters, uniform large-area nanopatterns are successfully fabricated, overcoming challenges such as the "rabbit ears" effect and inconsistent pattern fidelity. The nanopatterned substrates, integrated within 96-well plates with electrode arrays, enable real-time impedance spectroscopy, providing a dynamic assessment of cellular behavior under chemotherapeutic drug exposure. The developed NanoIEA platform facilitates comprehensive investigations into cellular growth and drug interactions. RNA sequencing of MCF-7 cells cultured on nanopatterned substrates reveals significant differential gene expression, suggesting that traditional flat-surface cultures may induce artificial gene regulation, potentially biasing drug screening results. Patterned cell cultures that mimic physiological conditions yield more accurate and predictive outcomes for anticancer drug screening. This research underscores the critical role of nanopatterning in recapitulating in vivo-like gene expression and highlights the profound impact of microenvironmental cues on cellular behavior. By integrating advanced nanofabrication with precise real-time monitoring, this approach addresses technical limitations in bioelectronic sensing while providing deeper insights into dynamic cellular responses, reinforcing the importance of substrate design in tissue engineering and drug development.
本研究通过提高集成电极阵列的纳米图案化膜的精度和可扩展性,推进了生物电子平台和细胞行为分析,以实现实时、高通量监测。通过采用自组装单分子层(SAMs)并优化压印参数,成功制造出均匀的大面积纳米图案,克服了诸如“兔耳”效应和图案保真度不一致等挑战。集成在带有电极阵列的96孔板内的纳米图案化基板能够进行实时阻抗谱分析,从而对化疗药物暴露下的细胞行为进行动态评估。所开发的纳米集成电极阵列(NanoIEA)平台有助于对细胞生长和药物相互作用进行全面研究。在纳米图案化基板上培养的MCF-7细胞的RNA测序显示出显著的差异基因表达,这表明传统的平面培养可能会诱导人为的基因调控,从而可能使药物筛选结果产生偏差。模拟生理条件的图案化细胞培养物在抗癌药物筛选中产生更准确和可预测的结果。这项研究强调了纳米图案化在重现体内样基因表达中的关键作用,并突出了微环境线索对细胞行为的深远影响。通过将先进的纳米制造与精确的实时监测相结合,这种方法解决了生物电子传感中的技术限制,同时提供了对动态细胞反应的更深入见解,强化了底物设计在组织工程和药物开发中的重要性。