Chen Lung-Yi, Li Tai-Yue, Li Yi-Pei, Chen Nan-Yow, You Fengqi
Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
J Chem Theory Comput. 2025 Jul 8;21(13):6653-6665. doi: 10.1021/acs.jctc.5c00305. Epub 2025 Jun 19.
The generation of chemical molecular structures is crucial for advancements in drug design, materials science, and related fields. With the rise of artificial intelligence, numerous generative models have been developed to propose promising molecular structures to specific challenges. However, exploring the vast chemical space using classical generative models demands extensive chemical structure data, considerable computational resources, and a large number of model parameters, which hinders their efficiency. Quantum computing presents a promising alternative by exploiting quantum parallelism and entanglement, potentially reducing the computational overhead required for such tasks. In this study, we designed a quantum-based molecular generator (QMG) specifically tailored to generate small molecules containing carbon, nitrogen, and oxygen atoms. This model imposes strict constraints on the quantum circuit's output quantum states, significantly eliminating mathematically invalid connection graphs and enabling more efficient sampling of valid molecular structures. Remarkably, our quantum circuit, utilizing only 134 parameters, is capable of enumerating all molecular structures comprising up to nine heavy atoms, showcasing the parameter efficiency achievable through quantum superposition and entanglement. Our experimental results show that the output generated by this circuit exhibits a high degree of validity and uniqueness after Bayesian optimization, showing comparable performance to classical deep generative models. Furthermore, by fixing specific parameters in the quantum circuits, the quantum generator can constrain the chemical space and exclusively generate chemical molecules containing specified functional groups. This feature underscores its potential value for targeted applications in specific domains, especially in drug discovery. Overall, this compact design not only reduces parameter demands but also enables efficient exploration of a nontrivial portion of chemical space, demonstrating a key advantage of quantum-based generative models over larger classical counterparts.
化学分子结构的生成对于药物设计、材料科学及相关领域的进步至关重要。随着人工智能的兴起,已开发出众多生成模型,以针对特定挑战提出有前景的分子结构。然而,使用经典生成模型探索广阔的化学空间需要大量化学结构数据、可观的计算资源和大量模型参数,这阻碍了它们的效率。量子计算通过利用量子并行性和纠缠提供了一种有前景的替代方案,有可能减少此类任务所需的计算开销。在本研究中,我们设计了一种基于量子的分子生成器(QMG),专门用于生成包含碳、氮和氧原子的小分子。该模型对量子电路的输出量子态施加严格约束,显著消除数学上无效的连接图,并实现对有效分子结构更高效的采样。值得注意的是,我们的量子电路仅使用134个参数,就能枚举所有包含多达九个重原子的分子结构,展示了通过量子叠加和纠缠可实现的参数效率。我们的实验结果表明,经过贝叶斯优化后,该电路生成的输出具有高度的有效性和唯一性,表现出与经典深度生成模型相当的性能。此外,通过固定量子电路中的特定参数,量子生成器可以约束化学空间,并专门生成包含指定官能团的化学分子。这一特性凸显了其在特定领域(尤其是药物发现)的靶向应用中的潜在价值。总体而言,这种紧凑的设计不仅减少了参数需求,还能有效地探索化学空间的一个重要部分,证明了基于量子的生成模型相对于更大的经典模型的关键优势。