Suppr超能文献

肺切除术后新发房颤新型预测模型的开发与验证

Development and validation of a novel prediction model for new-onset atrial fibrillation after lung resection.

作者信息

Chen Yasha, Hu Yangxi, Wang Jiamei, Sun Jianmin, Hu Bowen, Huang Kun, He Zhiqing, Liang Chun, Lin Yunling

机构信息

Department of Cardiology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, China.

Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China.

出版信息

Ann Med. 2025 Dec;57(1):2519673. doi: 10.1080/07853890.2025.2519673. Epub 2025 Jun 19.

Abstract

BACKGROUND

Postoperative atrial fibrillation (POAF) is the most prevalent and potentially life-threatening arrhythmia following thoracic surgery. This study aimed to construct and validate a predictive model for assessing POAF risk.

METHODS

A meta-analysis was conducted to rank risk factors associated with POAF based on their respective risk ratios (RRs). Significant risk factors identified from the meta-analyses were incorporated into the model and assigned weights. External validation was performed using a retrospective cohort from China. Receiver operating characteristic (ROC) curves, calibration plots and decision curve analysis (DCA) were employed to assess the model's predictive performance, calibration and clinical utility.

RESULTS

We screened 40 cohort studies involving 58,899 patients. We developed a risk model that incorporated age ≥ 70 years (RR 2.10, 95% CI 1.34-3.30;  < 0.05), male sex (RR 1.46, 95% CI 1.34-1.60;  < 0.05), COPD (RR 2.28, 95% CI 1.81-2.89;  < 0.05), CAD (RR 1.72, 95% CI 1.49-1.99;  < 0.05), heart failure (RR 1.62, 95% CI 1.12-2.35;  < 0.05), pneumonectomy (RR 2.32, 95% CI 2.01-2.67;  < 0.05) and lobectomy (RR 1.86, 95% CI 1.38-2.51;  < 0.05) and thoracotomy (RR 1.46, 95% CI 1.30-1.64;  < 0.05). Validation was performed in an external cohort of 1546 participants, demonstrating strong discrimination with an area under the receiver operating characteristic curve (95% CI) of 0.89 (95% CI 0.81-0.83). The calibration curve and DCA curve results demonstrated good concordance and applicability.

CONCLUSIONS

This model, built with easily accessible clinical variables, could accurately predict the risk of POAF. This holds promise for improving clinical decision making and guiding early interventions.

摘要

背景

术后心房颤动(POAF)是胸外科手术后最常见且可能危及生命的心律失常。本研究旨在构建并验证一个用于评估POAF风险的预测模型。

方法

进行一项荟萃分析,根据各自的风险比(RRs)对与POAF相关的风险因素进行排序。从荟萃分析中确定的显著风险因素被纳入模型并赋予权重。使用来自中国的回顾性队列进行外部验证。采用受试者工作特征(ROC)曲线、校准图和决策曲线分析(DCA)来评估模型的预测性能、校准和临床实用性。

结果

我们筛选了40项队列研究,涉及58,899名患者。我们开发了一个风险模型,纳入了年龄≥70岁(RR 2.10,95%CI 1.34 - 3.30;P<0.05)、男性(RR 1.46,95%CI 1.34 - 1.60;P<0.05)、慢性阻塞性肺疾病(COPD)(RR 2.28,95%CI 1.81 - 2.89;P<0.05)、冠状动脉疾病(CAD)(RR 1.72,95%CI 1.49 - 1.99;P<0.05)、心力衰竭(RR 1.62,95%CI 1.12 - 2.35;P<0.05)、肺切除术(RR 2.32,95%CI 2.01 - 2.67;P<0.05)、肺叶切除术(RR 1.86,95%CI 1.38 - 2.51;P<0.05)和开胸手术(RR 1.46,95%CI 1.30 - 1.64;P<0.05)。在1546名参与者的外部队列中进行了验证,受试者工作特征曲线下面积(95%CI)为0.89(95%CI 0.81 - 0.83),显示出很强的区分能力。校准曲线和DCA曲线结果显示出良好的一致性和适用性。

结论

该模型基于易于获取的临床变量构建,能够准确预测POAF风险。这有望改善临床决策并指导早期干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验