Suppr超能文献

针对哥伦比亚类风湿性关节炎患者既定队列临床改善情况的多变量预测模型的开发与评估。

Development and evaluation of a multivariable prediction model for clinical improvement in an established cohort of Colombian rheumatoid arthritis patients.

作者信息

Ibáñez-Antequera Claudia, Rodríguez-Vargas Gabriel-Santiago, Rodríguez-Florido Fernando, Rodríguez-Linares Pedro, Rojas-Villarraga Adriana, Santos-Moreno Pedro

机构信息

Vice-Rectory of Research Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.

Research Department, BIOMAB-Center for Rheumatoid Arthritis, Bogotá, Colombia.

出版信息

Ther Adv Musculoskelet Dis. 2025 Jun 16;17:1759720X251342426. doi: 10.1177/1759720X251342426. eCollection 2025.

Abstract

BACKGROUND

Rheumatoid arthritis (RA) is a chronic autoimmune disease, and a predicting clinical improvement is essential.

OBJECTIVES

The aim of the present study was to identify predictor variables of clinical improvement in patients with RA using artificial intelligence (AI) models in a specialized RA center.

DESIGN

Retrospective cohort study in adult RA patients was conducted between January and June 2022. Follow-up data related to clinical improvement was taken from 6 to 12 months after the baseline. Predictive models were generated by machine learning (ML), by Python programming language. The Transparent Reporting of a multivariate prediction model for Individual Prognosis or Diagnosis (TRIPOD) guidelines were followed to harmonize this study based on AI.

METHODS

The response variable was classified as improved and non-improved. Patients were considered improved if they persisted or achieved a Disease Activity Score 28-joints (DAS28) <3.2 at the end of the follow-up period or experienced a decrease ⩾0.6 compared to baseline, regardless of the initial DAS28 value. Explainability techniques in AI were applied to identify the most relevant clinical features.

RESULTS

In total, 3161 RA patients were included. The median age was 65 years (interquartile range (IQR) 57-72). 82.7% were female. Disease duration was 8.3 years (IQR 4.9-11.3). The median value of baseline DAS28 was 2.1 (IQR 2.1-2.8). 2668 (84.4%) were classified as improved, and 493 (15.6%) as non-improved. From ML models, the Extra tree model showed higher sensitivity (0.841). Regarding clinical improvement prediction with the Shapley Additive Explanations method, it was observed that low values of baseline DAS28 were positively associated with clinical improvement. The use of biologic disease-modifying antirheumatic drugs and the presence of anti-cyclic citrullinated peptide (CCP) were related to an increase in the probability of non-improved, which may be secondary to the level of severity of the disease.

CONCLUSION

AI models in RA can predict clinical improvement at initial consultations, enabling targeted approaches. Disease severity may be influenced by anti-CCP positivity and the use of biologic therapies when conventional treatments fail.

摘要

背景

类风湿关节炎(RA)是一种慢性自身免疫性疾病,预测临床改善情况至关重要。

目的

本研究的目的是在一家专业的RA中心使用人工智能(AI)模型识别RA患者临床改善的预测变量。

设计

2022年1月至6月对成年RA患者进行回顾性队列研究。与临床改善相关的随访数据取自基线后6至12个月。通过机器学习(ML),使用Python编程语言生成预测模型。遵循个体预后或诊断多变量预测模型的透明报告(TRIPOD)指南来协调这项基于AI的研究。

方法

将反应变量分类为改善和未改善。如果患者在随访期结束时持续或达到疾病活动评分28关节(DAS28)<3.2,或与基线相比下降⩾0.6,则被认为是改善,无论初始DAS28值如何。应用AI中的可解释性技术来识别最相关的临床特征。

结果

总共纳入了3161例RA患者。中位年龄为65岁(四分位间距(IQR)57 - 72)。82.7%为女性。病程为8.3年(IQR 4.9 - 11.3)。基线DAS28的中位值为2.1(IQR 2.1 - 2.8)。2668例(84.4%)被分类为改善,493例(15.6%)为未改善。在ML模型中,Extra tree模型显示出更高的敏感性(0.841)。关于使用Shapley加性解释方法进行临床改善预测,观察到基线DAS28值低与临床改善呈正相关。使用生物改善病情抗风湿药物和抗环瓜氨酸肽(CCP)的存在与未改善概率的增加有关,这可能是疾病严重程度的继发因素。

结论

RA中的AI模型可以在初次会诊时预测临床改善情况,从而实现有针对性的治疗方法。当传统治疗失败时,疾病严重程度可能受抗CCP阳性和生物治疗使用的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/199c/12174781/4da0f7ff6cfd/10.1177_1759720X251342426-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验