Department of Rheumatology, Medicine School, Benemérita Universidad Autónoma de Puebla, Mexico; Rheumatology and Autoimmune Diseases Research Unit, Specialties Hospital UMAE-CIBIOR, Instituto Mexicano del Seguro Social, Puebla, Mexico.
Electronics Department, National Institute of Astrophysics, Optics and Electronics, Puebla, Mexico.
Semin Arthritis Rheum. 2024 Oct;68:152501. doi: 10.1016/j.semarthrit.2024.152501. Epub 2024 Jul 23.
This study aimed to investigate the current status and performance of machine learning (ML) approaches in providing reproducible treatment response predictions.
This systematic review was conducted in accordance with the PRISMA statement and the CHARMS checklist. We searched PubMed, Cochrane Library, Web of Science, Scopus, and EBSCO databases for cohort studies that derived and/or validated ML models focused on predicting rheumatoid arthritis (RA) treatment response. We extracted data and critically appraised studies based on the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Risk of Bias Assessment Tool (PROBAST) guidelines.
From 210 unduplicated records identified by the literature search, we retained 29 eligible studies. Of these studies, 10 developed a predictive model and reported a mean adherence to the TRIPOD guidelines of 45.6 % (95 % CI: 38.3-52.8 %). The remaining 19 studies not only developed a predictive model but also validated it externally, with a mean adherence of 42.9 % (95 % CI: 39.1-46.6 %). Most of the articles had an unclear risk of bias (41.4 %), followed by a high risk of bias, which was present in 37.9 %.
In recent years, ML methods have been increasingly used to predict treatment response in RA. Our critical appraisal revealed unclear and high risk of bias in most of the identified models, suggesting that researchers can do more to address the risk of bias and increase transparency, including the use of calibration measures and reporting methods for handling missing data.
None.
本研究旨在调查机器学习(ML)方法在提供可重现的治疗反应预测方面的现状和性能。
本系统评价按照 PRISMA 声明和 CHARMS 清单进行。我们检索了 PubMed、Cochrane 图书馆、Web of Science、Scopus 和 EBSCO 数据库,以获取专注于预测类风湿关节炎(RA)治疗反应的 ML 模型的推导和/或验证的队列研究。我们根据 Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis(TRIPOD)和 Prediction Model Risk of Bias Assessment Tool(PROBAST)指南提取数据并对研究进行批判性评估。
通过文献检索,从 210 份非重复记录中,我们保留了 29 项符合条件的研究。这些研究中,10 项研究开发了预测模型,并报告了对 TRIPOD 指南的平均依从率为 45.6%(95%CI:38.3-52.8%)。其余 19 项研究不仅开发了预测模型,而且还进行了外部验证,平均依从率为 42.9%(95%CI:39.1-46.6%)。大多数文章的偏倚风险不明确(41.4%),其次是高偏倚风险,占 37.9%。
近年来,ML 方法已越来越多地用于预测 RA 的治疗反应。我们的批判性评价显示,大多数已确定的模型存在不明确和高偏倚风险,这表明研究人员可以做更多工作来解决偏倚风险,并提高透明度,包括使用校准措施和报告方法来处理缺失数据。
无。