Qureshi Yasser M, Voloshin Vitaly, Guy Amy, Ranson Hilary, McCall Philip J, Covington James A, Towers Catherine E, Towers David P
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK.
Curr Res Parasitol Vector Borne Dis. 2025 May 22;7:100273. doi: 10.1016/j.crpvbd.2025.100273. eCollection 2025.
Insecticide-treated nets (ITNs) remain a critical intervention in controlling malaria transmission, yet the behavioural adaptations of mosquitoes in response to these interventions are not fully understood. This study examined the flight behaviour of insecticide-resistant (IR) and insecticide-susceptible (IS) strains around an Olyset net (OL), a permethrin-impregnated ITN, an untreated net (UT). Using machine learning (ML) models, we classified mosquito flight trajectories with high balanced accuracy (0.838) and ROC AUC (0.925). Contrary to assumptions that behavioural changes at OL would intensify over time, our findings show an immediate onset of convoluted, erratic flight paths for both IR and IS mosquitoes around the treated net. SHAP analysis identified three key predictive features of OL exposure: frequency of zero-crossings in flight angle change; first quartile of flight angle change; and zero-crossings in horizontal velocity. These suggest disruptive flight patterns, indicating insecticidal irritancy. While IS mosquitoes displayed rapid, disordered trajectories and mostly died within 30 min, IR mosquitoes persisted throughout the 2-h experiments but exhibited similarly disturbed behaviour, suggesting resistance does not fully mitigate disruption. Our findings challenge literature suggesting permethrin's repellency in solution form, instead supporting an irritant or contact-driven effect when incorporated into net fibres. This study highlights the value of ML-based trajectory analysis for understanding mosquito behaviour, refining ITN configurations and evaluating novel active ingredients aimed at disrupting mosquito flight behaviour. Future work should extend these methods to other ITNs to further illuminate the complex interplay between mosquito behaviour and insecticidal intervention.
经杀虫剂处理的蚊帐(ITNs)仍然是控制疟疾传播的关键干预措施,但蚊子对这些干预措施的行为适应性尚未得到充分了解。本研究考察了抗杀虫剂(IR)和易感杀虫剂(IS)品系的蚊子在Olyset蚊帐(OL,一种浸渍有氯菊酯的ITN)、未处理蚊帐(UT)周围的飞行行为。使用机器学习(ML)模型,我们以高平衡准确率(0.838)和ROC曲线下面积(0.925)对蚊子的飞行轨迹进行了分类。与OL处行为变化会随时间加剧的假设相反,我们的研究结果表明,经处理蚊帐周围的IR和IS蚊子都会立即出现复杂、不规则的飞行路径。SHAP分析确定了OL暴露的三个关键预测特征:飞行角度变化的过零频率;飞行角度变化的第一四分位数;以及水平速度的过零。这些表明了破坏性的飞行模式,显示出杀虫刺激性。虽然IS蚊子表现出快速、无序的轨迹,且大多在30分钟内死亡,但IR蚊子在整个2小时的实验中都存活下来,但表现出同样受干扰的行为,这表明抗性并不能完全减轻干扰。我们的研究结果对认为氯菊酯以溶液形式具有驱避性这一文献提出了挑战,相反,支持了氯菊酯掺入蚊帐纤维时具有刺激或接触驱动效应的观点。本研究强调了基于ML的轨迹分析对于理解蚊子行为、优化ITN配置以及评估旨在干扰蚊子飞行行为的新型活性成分的价值。未来的工作应将这些方法扩展到其他ITN,以进一步阐明蚊子行为与杀虫干预之间的复杂相互作用。