Suppr超能文献

基于超声自发显影构建重症脑出血患者静脉血栓栓塞风险预警模型

Construction of an early warning model for venous thromboembolism risk in patients with severe cerebral hemorrhage based on ultrasound spontaneous imaging.

作者信息

Ma Bei, Chen Chen, Wang Qin, Chen Xi

机构信息

Department of Critical Care Medicine, Liangjiang Hospital Affiliated to Chongqing Medical University, Chongqing, China.

出版信息

Front Neurol. 2025 Jun 4;16:1562963. doi: 10.3389/fneur.2025.1562963. eCollection 2025.

Abstract

OBJECTIVE

To investigate the role of ultrasound spontaneous echo contrast (SEC) in venous thromboembolism (VTE) in patients with severe spontaneous cerebral hemorrhage (ICH) and to construct a clinical prediction model.

METHODS

A total of 69 critically ill ICH patients admitted to the Department of Critical Care Medicine of Liangjiang Hospital of Chongqing Medical University between January 2022 and March 2024 were included in the study. Datas were collected prospectively, including general information, test data, clinical outcomes, and lower limb vascular ultrasound images within 48 h of admission. The statistical analysis was conducted using SPSS 22.0, and the model was constructed using binary logistic regression analysis. The efficacy of the model was assessed using subject operating (ROC) curves and the Hosmer-Lemeshow goodness-of-fit test.

RESULTS

The SEC, Albumin and age were identified as independent risk factors for thrombosis in patients with severe ICH. The joint prediction model, constructed based on the indicators, is given by the following equation: Logit(P) = 0.477-0.216 * Albumin + 1.43 * SEC + 0.044 * age. The model demonstrated consistent predictive performance, exhibiting good discrimination (AUC = 0.900) and calibration (Hosmer-Lemeshow χ2 = 5.231,  = 0.733 > 0.05).

CONCLUSION

The ICH-VTE early warning model constructed on the basis of SEC, Albumin and age performs well and helps clinicians to dynamically assess the risk of VTE to determine the timing of anticoagulation, which provides therapeutic ideas to reduce the incidence of VTE and improve the clinical outcome of ICH.

摘要

目的

探讨超声自发显影(SEC)在重症自发性脑出血(ICH)患者静脉血栓栓塞症(VTE)中的作用,并构建临床预测模型。

方法

纳入2022年1月至2024年3月重庆医科大学两江医院重症医学科收治的69例重症ICH患者。前瞻性收集数据,包括一般资料、检验数据、临床结局以及入院48小时内的下肢血管超声图像。采用SPSS 22.0进行统计分析,通过二元逻辑回归分析构建模型。使用受试者工作特征(ROC)曲线和Hosmer-Lemeshow拟合优度检验评估模型的效能。

结果

SEC、白蛋白和年龄被确定为重症ICH患者血栓形成的独立危险因素。基于这些指标构建的联合预测模型由以下方程给出:Logit(P) = 0.477 - 0.216 * 白蛋白 + 1.43 * SEC + 0.044 * 年龄。该模型显示出一致的预测性能,具有良好的区分度(AUC = 0.900)和校准度(Hosmer-Lemeshow χ2 = 5.231,P = 0.733 > 0.05)。

结论

基于SEC、白蛋白和年龄构建的ICH-VTE早期预警模型性能良好,有助于临床医生动态评估VTE风险以确定抗凝时机,为降低VTE发生率和改善ICH临床结局提供了治疗思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7792/12175772/0397a279de69/fneur-16-1562963-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验