Suppr超能文献

通过整合多模态数据和层次本体对自身免疫性疾病和自身炎症性疾病进行疾病关联研究。

Disease association study of Autoimmune and autoinflammatory diseases by integrating multi-modal data and hierarchical ontologies.

作者信息

Liu Axian, Su Yutong, Zhu Jinwei, Li Yuan-Yuan

机构信息

Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.

Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Immunol. 2025 Jun 4;16:1575490. doi: 10.3389/fimmu.2025.1575490. eCollection 2025.

Abstract

BACKGROUND

Autoimmune and autoinflammatory diseases (AIIDs) are characterized by significant heterogeneity and comorbidities, complicating their mechanisms and classification. Disease associations studies, or diseasome, facilitate the exploration of disease mechanisms and development of novel therapeutic strategies. However, the diseasome for AIIDs is still in its infancy. To address this gap, we developed a novel framework that utilizes multi-modal data and biomedical ontologies to explore AIID associations.

METHODS

We curated disease terms from Mondo/DO/MeSH/ICD, and three specialized AIID knowledge bases, creating an integrated repository of 484 autoimmune diseases (ADs), 110 autoinflammatory diseases (AIDs), and 284 associated diseases. By leveraging genetic, transcriptomic (bulk and single-cell), and phenotypic data, we built multi-layered AIID association networks and an integrated network supported by cross-scale evidence. Our ontology-aware disease similarity (OADS) strategy incorporates not only multi-modal data, but also continuous biomedical ontologies.

RESULTS

Network modularity analysis identified 10 robust disease communities and their representative phenotypes and dysfunctional pathways. Focusing on 10 highly concerning AIIDs, such as Behçet's disease and Systemic lupus erythematosus, we provide insights into the information flow from genetic susceptibilities to transcriptional dysregulation, alteration in immune microenvironment, and clinical phenotypes, and thus the mechanisms underlying comorbidity. For instance, in systemic sclerosis and psoriasis, dysregulated genes like CCL2 and CCR7 contribute to fibroblast activation and the infiltration of CD4+ T and NK cells through IL-17 signaling pathway, PPAR signaling pathway, leading to skin involvement and arthritis.

CONCLUSION

These findings enhance our understanding of AIID pathogenesis, improving disease classification and supporting drug repurposing and targeted therapy development.

摘要

背景

自身免疫性和自身炎症性疾病(AIIDs)具有显著的异质性和共病性,这使得它们的发病机制和分类变得复杂。疾病关联研究,即疾病组学,有助于探索疾病机制并开发新的治疗策略。然而,AIIDs的疾病组学仍处于起步阶段。为了填补这一空白,我们开发了一种利用多模态数据和生物医学本体来探索AIID关联的新框架。

方法

我们从Mondo/DO/MeSH/ICD以及三个专门的AIID知识库中筛选疾病术语,创建了一个包含484种自身免疫性疾病(ADs)、110种自身炎症性疾病(AIDs)和284种相关疾病的综合知识库。通过利用遗传、转录组学(批量和单细胞)和表型数据,我们构建了多层AIID关联网络以及一个由跨尺度证据支持的综合网络。我们的本体感知疾病相似性(OADS)策略不仅纳入了多模态数据,还纳入了连续的生物医学本体。

结果

网络模块化分析确定了10个稳健的疾病群落及其代表性表型和功能失调的通路。聚焦于10种备受关注的AIIDs,如白塞病和系统性红斑狼疮,我们深入了解了从遗传易感性到转录失调、免疫微环境改变以及临床表型的信息流,从而了解了共病的潜在机制。例如,在系统性硬化症和银屑病中,CCL2和CCR7等失调基因通过IL-17信号通路、PPAR信号通路促进成纤维细胞活化以及CD4+T和NK细胞的浸润,导致皮肤受累和关节炎。

结论

这些发现增强了我们对AIID发病机制的理解,改善了疾病分类,并支持药物再利用和靶向治疗的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验