Suppr超能文献

LASSO-Cox模型在淋巴结转移鼻咽癌放化疗疗效预后评估中的应用

LASSO-Cox model in the prognostic evaluation of radiochemotherapy efficacy for lymph node metastatic nasopharyngeal carcinoma.

作者信息

Lu Simin, Zhang Xin, Zheng Xin, Li Gang, Zhang Haizhen, Zhong Yinghong, Wang Daijie

机构信息

Department of Oncology, Luzhou People's Hospital, Luzhou, China.

出版信息

Front Oncol. 2025 Jun 4;15:1606967. doi: 10.3389/fonc.2025.1606967. eCollection 2025.

Abstract

BACKGROUND

This retrospective study aimed to develop and validate a prognostic evaluation system based on the LASSO-Cox regression model for nasopharyngeal carcinoma (NPC) patients undergoing radiochemotherapy.

METHODS

Data from 186 patients treated between 2013 and 2019 at three tertiary hospitals in China were analyzed. Patients were randomly divided into a training set and a validation set in a 7:3 ratio. In the training cohort, the LASSO + Cox regression analysis was conducted to identify independent prognostic factors influencing progression-free survival (PFS). Based on these independent factors, a nomogram was constructed to predict 2-, 3-, and 5-year PFS. The predictive performance of the nomogram was then evaluated in the validation cohort.

RESULTS

Using the LASSO method for variable selection, three prognostic indicators were initially identified, and stepwise Cox regression in the training cohort further confirmed that clinical stage and EBV level were independent predictors of PFS. A nomogram was constructed based on these factors, which achieved areas under the receiver operating characteristic curves (AUC-ROC) of 0.801, 0.760, and 0.749 for predicting 2-, 3-, and 5-year PFS, respectively, in the validation cohort. The model also demonstrated robust performance through calibration and decision curve analyses.

CONCLUSIONS

This nomogram provides a practical tool for personalized risk assessment and treatment planning, facilitating early identification of high-risk patients who may benefit from intensified treatment strategies.

摘要

背景

本回顾性研究旨在开发并验证基于LASSO-Cox回归模型的鼻咽癌(NPC)放化疗患者预后评估系统。

方法

分析了2013年至2019年间在中国三家三级医院接受治疗的186例患者的数据。患者按7:3的比例随机分为训练集和验证集。在训练队列中,进行LASSO + Cox回归分析以确定影响无进展生存期(PFS)的独立预后因素。基于这些独立因素构建列线图以预测2年、3年和5年PFS。然后在验证队列中评估列线图的预测性能。

结果

使用LASSO方法进行变量选择,最初确定了三个预后指标,训练队列中的逐步Cox回归进一步证实临床分期和EBV水平是PFS的独立预测因素。基于这些因素构建了列线图,在验证队列中预测2年、3年和5年PFS时,其受试者操作特征曲线下面积(AUC-ROC)分别为0.801、0.760和0.749。该模型通过校准和决策曲线分析也显示出强大的性能。

结论

该列线图为个性化风险评估和治疗计划提供了实用工具,有助于早期识别可能从强化治疗策略中获益的高危患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0351/12174080/f34f17f8729a/fonc-15-1606967-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验