Suppr超能文献

用于预测卵巢癌中PARP抑制剂疗效和预后的多模态数据与机器学习整合

Multimodal data integration with machine learning for predicting PARP inhibitor efficacy and prognosis in ovarian cancer.

作者信息

Xiong Xi'an, Cai Li, Yang Zhen, Cao Zhongping, Wu Nayiyuan, Ni Qianxi

机构信息

The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.

College of Pharmacy, Dali University, Dali, China.

出版信息

Front Oncol. 2025 Jun 4;15:1571193. doi: 10.3389/fonc.2025.1571193. eCollection 2025.

Abstract

BACKGROUND

Poly(ADP)-ribose polymerase inhibitors (PARPi) have brought a significant breakthrough in the maintenance treatment of ovarian cancer. However, beyond BRCA mutation/HRD, the direct impact of other prognostic factors on PARPi response and prognosis remains inadequately characterized.

METHODS

We assessed PARPi prognostic factors from clinical characteristics, pathological findings, and biochemical indicators from 251 ovarian cancer patients. Cox univariate and multivariate analyses were employed to identify the factors which influencing PARPi efficacy and patients prognosis. Feature screening was conducted using correlation analysis, significance analysis, Variance Inflation Factor (VIF), and Elastic Net stability analysis. Patient-specific efficacy and prognosis prediction models were then constructed using various machine learning algorithms.

RESULTS

Total bile acids (TBAs) and CA-199 present as an independent risk factor in Cox multivariate analysis for primary and recurrent ovarian cancer patients respectively (P < 0.05). TBAs emerged as a risk factor, with each unit increase associated with a 10% rise in recurrence risk. The best-performing model has an AUC of 0.79 ± 0.09 and an AUC of 0.72 ± 0.03 for primary and recurrent ovarian cancer patients respectively. External validation(n=36) in multicenter cohorts maintained robust performance with AUC of 0.74 and an AUC of 0.70 for primary and recurrent ovarian cancer patients respectively.

CONCLUSIONS

We identified TBAs and CA-199 as a significant prognostic factor in primary and recurrent ovarian cancer patients respectively. The integration of multimodal data with machine learning holds significant potential for enhancing prognosis prediction in PARPi treatment for ovarian cancer.

摘要

背景

聚(ADP)-核糖聚合酶抑制剂(PARPi)在卵巢癌维持治疗方面带来了重大突破。然而,除了BRCA突变/同源重组缺陷(HRD)外,其他预后因素对PARPi反应和预后的直接影响仍未得到充分表征。

方法

我们从251例卵巢癌患者的临床特征、病理结果和生化指标评估PARPi预后因素。采用Cox单因素和多因素分析来确定影响PARPi疗效和患者预后的因素。使用相关性分析、显著性分析、方差膨胀因子(VIF)和弹性网络稳定性分析进行特征筛选。然后使用各种机器学习算法构建患者特异性疗效和预后预测模型。

结果

总胆汁酸(TBA)和CA-199分别在原发性和复发性卵巢癌患者的Cox多因素分析中作为独立危险因素出现(P<0.05)。TBA成为一个危险因素,每单位增加与复发风险增加10%相关联。表现最佳的模型在原发性和复发性卵巢癌患者中的曲线下面积(AUC)分别为0.79±0.09和0.72±0.03。多中心队列中的外部验证(n=36)在原发性和复发性卵巢癌患者中分别保持了稳健的性能,AUC分别为0.74和0.70。

结论

我们分别确定TBA和CA-199为原发性和复发性卵巢癌患者中的重要预后因素。多模态数据与机器学习的整合在增强PARPi治疗卵巢癌的预后预测方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08c6/12173870/e78e13a45d75/fonc-15-1571193-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验