Suppr超能文献

电荷提取多层结构助力采用碳电极的正-本征-负型钙钛矿太阳能电池。

Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes.

作者信息

Lukas Tino, Seo Seongrok, Holzhey Philippe, Stewart Katherine, Henderson Charlie, Wagner Lukas, Beynon David, Watson Trystan M, Kim Ji-Seon, Kohlstädt Markus, Snaith Henry J

机构信息

Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.

Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany.

出版信息

ACS Energy Lett. 2025 May 13;10(6):2736-2742. doi: 10.1021/acsenergylett.4c03403. eCollection 2025 Jun 13.

Abstract

Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or "hole-transport-layer-free" architectures. Here, we present a systematic study to assess the compatibility of "inverted", p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO) and Poly-(2,3-dihydrothieno-1,4-dioxin)-poly-(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies.

摘要

钙钛矿太阳能电池具有高功率转换效率,但通常依赖于真空沉积的金属触点,这导致贵金属的材料成本高昂,对于更具反应性的金属则存在稳定性问题。碳基材料提供了一种经济高效且可能更稳定的替代方案。绝大多数基于碳电极的钙钛矿太阳能电池采用负本征正型(n-i-p)或“无空穴传输层”结构。在此,我们进行了一项系统研究,以评估“倒置”的p-i-n结构钙钛矿太阳能电池接触层与碳顶电极的兼容性。我们确定了常见电子传输层与碳电极沉积过程之间的不兼容性,以及碳电极中以前未观察到的半导体特性,这些特性对电荷提取和电子行为具有独特影响。为克服这些问题,我们引入了双层原子层沉积的氧化锡(SnO)和聚(2,3-二氢噻吩并-1,4-二恶英)-聚(苯乙烯磺酸盐)(PEDOT:PSS),实现了高达16.1%的功率转换效率,并且在户外老化500小时后仍保留94%的性能。该研究对于可印刷、无金属电极且无蒸发的钙钛矿光伏技术而言是向前迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e28/12172029/378dd291c8f5/nz4c03403_0001.jpg

相似文献

1
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes.
ACS Energy Lett. 2025 May 13;10(6):2736-2742. doi: 10.1021/acsenergylett.4c03403. eCollection 2025 Jun 13.
3
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2025 Jan 29;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub9.
5
Quantum Tunneling of Photogenerated Charges for Artificial Photosynthesis.
Acc Chem Res. 2025 Jun 18. doi: 10.1021/acs.accounts.5c00295.
6
Vacuum-Evaporated Perovskite and Interfacial Modifier for Efficient Perovskite Solar Cells.
Small. 2025 Jun;21(24):e2501410. doi: 10.1002/smll.202501410. Epub 2025 May 2.
7
Unveiling the Role of Guanidinium for Enhanced Charge Extraction in Inverted Perovskite Solar Cells.
ACS Energy Lett. 2025 May 9;10(6):2660-2669. doi: 10.1021/acsenergylett.5c00469. eCollection 2025 Jun 13.
8
Tailoring the C/SnO Bilayer to Enhance p-i-n Carbon-Electrode Perovskite Photovoltaic Cells and Modules.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35533-35540. doi: 10.1021/acsami.5c05279. Epub 2025 Jun 6.
9
Monolithic Perovskite/Silicon Tandem Solar Cells Enabled by Multifunctional TiO Interconnects.
Small. 2025 Jun;21(24):e2500969. doi: 10.1002/smll.202500969. Epub 2025 Apr 27.
10
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2025 Jun 16;6(6):CD011841. doi: 10.1002/14651858.CD011841.pub3.

本文引用的文献

1
Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands.
Science. 2024 Apr 12;384(6692):189-193. doi: 10.1126/science.adm9474. Epub 2024 Apr 11.
2
Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells.
Science. 2024 Mar 15;383(6688):1198-1204. doi: 10.1126/science.adk9089. Epub 2024 Mar 14.
3
All-Printed Roll-to-Roll Perovskite Photovoltaics Enabled by Solution-Processed Carbon Electrode.
Adv Mater. 2023 Apr;35(16):e2208561. doi: 10.1002/adma.202208561. Epub 2023 Mar 14.
4
Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab?
Adv Mater. 2022 Jun;34(24):e2106540. doi: 10.1002/adma.202106540. Epub 2022 Apr 7.
5
Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells.
ACS Nano. 2016 Jun 28;10(6):6306-14. doi: 10.1021/acsnano.6b02613. Epub 2016 May 20.
7
The light and shade of perovskite solar cells.
Nat Mater. 2014 Sep;13(9):838-42. doi: 10.1038/nmat4065.
8
High charge carrier mobilities and lifetimes in organolead trihalide perovskites.
Adv Mater. 2014 Mar 12;26(10):1584-9. doi: 10.1002/adma.201305172.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验