Suppr超能文献

中性粒细胞与白蛋白比值的不同轨迹模式可预测大血管闭塞性卒中血管内治疗后的临床结局。

Distinct trajectory patterns of neutrophil-to-albumin ratio predict clinical outcomes after endovascular therapy in large vessel occlusion stroke.

作者信息

Gao Weiwei, Sun Junxuan, Yu Lingfeng, She Jingjing, Zhao Yanan, Cai Lijuan, Chen Xingyu, Zhu Renjing

机构信息

Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Department of Emergency, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

出版信息

Front Aging Neurosci. 2025 Jun 4;17:1570662. doi: 10.3389/fnagi.2025.1570662. eCollection 2025.

Abstract

OBJECTIVE

To investigate the dynamic characteristics and prognostic value of neutrophil-to-albumin ratio (NAR) in patients with acute large vessel occlusion ischemic stroke (LVO-AIS) undergoing endovascular therapy (EVT).

METHODS

In this retrospective cohort study, we consecutively enrolled 299 patients with anterior circulation LVO-AIS who underwent EVT between January 2018 and February 2024. NAR was measured at admission, day 1, and day 3 after EVT. The primary outcome was poor functional outcome at 90 days (modified Rankin Scale score 3-6). Secondary outcomes included symptomatic intracranial hemorrhage (sICH), malignant cerebral edema (MCE), and in-hospital mortality (IHM). Multivariable logistic regression and restricted cubic spline regression were used to analyze the association between NAR and functional outcomes. Latent class trajectory modeling (LCTM) was applied to identify NAR evolution patterns, and propensity score matching (PSM) was performed to balance baseline characteristics between different trajectory groups, followed by conditional logistic regression to assess their association with clinical outcomes.

RESULTS

At 90-day follow-up, 197 patients (65.9%) had poor outcomes. The predictive value of NAR increased over time, with day 3 NAR showing the best predictive performance (poor outcome: AUC = 0.79; sICH: AUC = 0.70; MCE: AUC = 0.75; IHM: AUC = 0.81). Multivariable analysis showed that for each unit increase in day 3 NAR, the risk of 90-day poor outcome increased 2.81-fold (95% CI: 1.96-4.03,  < 0.001). LCTM analysis identified two distinct NAR evolution patterns: continuously increasing (31.1%) and peak-then-decline (68.7%). After PSM (63 patients per group), compared with the continuously increasing trajectory, the peak-then-decline trajectory was associated with significantly lower risks of poor functional outcome (OR = 0.38, 95% CI: 0.17-0.86,  = 0.020), sICH (OR = 0.38, 95% CI: 0.17-0.86, p = 0.020), MCE (OR = 0.25, 95% CI: 0.10-0.61,  = 0.002), and IHM (OR = 0.13, 95% CI: 0.04-0.42,  < 0.001).

CONCLUSION

NAR trajectory patterns independently predict clinical outcomes after EVT for LVO-AIS. Dynamic monitoring of NAR, particularly on day 3 post-procedure, may facilitate early risk stratification and development of targeted intervention strategies, providing a new biomarker tool for precision stroke management.

摘要

目的

探讨急性大血管闭塞性缺血性卒中(LVO-AIS)患者接受血管内治疗(EVT)时中性粒细胞与白蛋白比值(NAR)的动态特征及预后价值。

方法

在这项回顾性队列研究中,我们连续纳入了299例2018年1月至2024年2月期间接受EVT的前循环LVO-AIS患者。在入院时、EVT后第1天和第3天测量NAR。主要结局是90天时功能预后不良(改良Rankin量表评分3 - 6分)。次要结局包括症状性颅内出血(sICH)、恶性脑水肿(MCE)和院内死亡率(IHM)。采用多变量逻辑回归和受限立方样条回归分析NAR与功能结局之间的关联。应用潜在类别轨迹模型(LCTM)识别NAR演变模式,并进行倾向得分匹配(PSM)以平衡不同轨迹组之间的基线特征,随后进行条件逻辑回归以评估它们与临床结局的关联。

结果

在90天随访时,197例患者(65.9%)预后不良。NAR的预测价值随时间增加,第3天的NAR显示出最佳预测性能(预后不良:AUC = 0.79;sICH:AUC = 0.70;MCE:AUC = 0.75;IHM:AUC = 0.81)。多变量分析显示,第3天NAR每增加一个单位,90天预后不良的风险增加2.81倍(95% CI:1.96 - 4.03,<0.001)。LCTM分析确定了两种不同的NAR演变模式:持续增加(31.1%)和先升高后下降(68.7%)。PSM(每组63例患者)后,与持续增加轨迹相比,先升高后下降轨迹与功能预后不良(OR = 0.38,95% CI:0.17 - 0.86,= 0.020)、sICH(OR = 0.38,95% CI:0.17 - 0.86,p = 0.020)、MCE(OR = 0.25,95% CI:0.10 - 0.61,= 0.002)和IHM(OR = 0.13,95% CI:0.04 - 0.42,<0.001)的风险显著降低相关。

结论

NAR轨迹模式可独立预测LVO-AIS患者接受EVT后的临床结局。对NAR进行动态监测,尤其是在术后第3天,可能有助于早期风险分层和制定针对性干预策略,为精准卒中管理提供一种新的生物标志物工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5adf/12174067/8ed5d037dcaa/fnagi-17-1570662-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验