Lu Yining, Berlinberg Elyse J, Alder Kareme, Chervonski Ethan, Patel Harsh H, Rice Morgan, Yanke Adam B, Cole Brian J, Verma Nikhil N, Hevesi Mario, Forsythe Brian
Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Midwest Orthopaedics at Rush, Chicago, Illinois, USA.
Orthop J Sports Med. 2025 Jun 17;13(6):23259671251335977. doi: 10.1177/23259671251335977. eCollection 2025 Jun.
Outcomes after arthroscopic rotator cuff repair (RCR) are frequently measured through clinically significant outcomes (CSOs) such as the minimal clinically important difference, the substantial clinical benefit, and the Patient Acceptable Symptom State. Global achievement of CSOs is challenging to predict.
To determine if unsupervised machine learning can identify distinct patient subgroups based on CSO achievement after elective arthroscopic RCR.
Case-control study; Level of evidence, 3.
A prospectively collected database was analyzed to identify patients who underwent elective arthroscopic RCR from 2015 to 2017. Tear dimensions were measured on magnetic resonance imaging utilizing a validated technique. CSO achievements on the American Shoulder and Elbow Surgeons, the Single Assessment Numeric Evaluation, and the Constant-Murley subjective score at 2-year follow-up were calculated. An unsupervised random forest algorithm was utilized to develop and internally validate patient subgroups with significantly different rates of CSO achievement. Patient subgroup membership, along with a total of 30 demographic and clinical variables, as well as preoperative patient-reported outcomes, were incorporated into a stepwise multivariable logistic regression to identify factors predictive of optimal CSO achievement.
A total of 346 patients (192 male; mean ± SD age, 57.2 ± 9.1 years; body mass index, 30.1 ± 5.4 kg/m) were eligible for inclusion and followed for a mean of 3.8 years (range, 2.0-6.2 years) Of these, a total of 333 patients were partitioned by the random forest algorithm into 2 subgroups (stability, 0.16; connectivity: 180.8; Dunn: 0.16; silhouette: 0.05), with 176 patients in the optimal achievement subgroup and 157 patients in the suboptimal achievement subgroup. The 2 subgroups differed significantly (all ≤ .004) in the likelihood of achievement of all CSOs. Stepwise multivariable logistic regression identified an increase of 1 mm in tear size in the sagittal dimension beyond 1.9 cm to predict a 10% increase in the probability of suboptimal achievement. Additional risk factors for suboptimal CSO achievement included increasing number of tendons involved (odds ratio [OR], 14.07; 95% CI, 4.50-44.02; < .001), subscapularis involvement (OR, 8.67; 95% CI, 2.45-30.71; = .01), and increased preoperative CMS score (OR, 1.11; 95% CI, 1.04-1.18; = .001). Protective factors included performance of a subpectoral biceps tenodesis compared with biceps tenotomy (OR, 0.22; 95% CI, 0.05-0.92; = .03).
Clinically meaningful subgroups were uncovered using an unsupervised machine learning algorithm in patients undergoing arthroscopic RCR. Tear size, number of tendons involved, and subscapularis involvement were significant and additive predictors of suboptimal CSO achievement at 2-year minimum follow-up. Treatment of concurrent biceps pathology with tenodesis conferred 78% increased likelihood of CSO achievement compared with tenotomy.
关节镜下肩袖修复术(RCR)后的疗效通常通过具有临床意义的结果(CSO)来衡量,如最小临床重要差异、显著临床获益和患者可接受症状状态。全面实现CSO具有挑战性。
确定无监督机器学习能否根据择期关节镜下RCR术后的CSO实现情况识别不同的患者亚组。
病例对照研究;证据等级,3级。
分析前瞻性收集的数据库,以识别2015年至2017年接受择期关节镜下RCR的患者。使用经过验证的技术在磁共振成像上测量撕裂尺寸。计算美国肩肘外科医师协会、单评估数字评价和Constant-Murley主观评分在2年随访时的CSO实现情况。使用无监督随机森林算法开发并内部验证CSO实现率显著不同的患者亚组。将患者亚组成员身份,以及总共30个人口统计学和临床变量,以及术前患者报告的结果,纳入逐步多变量逻辑回归,以识别预测最佳CSO实现的因素。
共有346例患者(192例男性;平均±标准差年龄,57.2±9.1岁;体重指数,30.1±5.4kg/m²)符合纳入标准,平均随访3.8年(范围,2.0 - 6.2年)。其中,共有333例患者通过随机森林算法分为2个亚组(稳定性,0.16;连通性:180.8;Dunn:0.16;轮廓:0.05),最佳实现亚组有176例患者,次优实现亚组有157例患者。这2个亚组在所有CSO实现的可能性上有显著差异(均≤0.004)。逐步多变量逻辑回归确定,矢状面撕裂尺寸每增加1mm超过1.9cm,预测次优实现概率增加10%。CSO实现次优的其他危险因素包括受累肌腱数量增加(优势比[OR],14.07;95%可信区间,4.50 - 44.02;P < 0.001)、肩胛下肌受累(OR,8.67;95%可信区间,2.45 - 30.71;P = 0.01)和术前CMS评分增加(OR,1.11;95%可信区间,1.04 - 1.18;P = 0.001)。保护因素包括与肱二头肌切断术相比进行胸小肌下肱二头肌固定术(OR,0.22;95%可信区间,0.05 - 0.92;P = 0.03)。
在接受关节镜下RCR的患者中,使用无监督机器学习算法发现了具有临床意义的亚组。在至少2年的随访中,撕裂尺寸、受累肌腱数量和肩胛下肌受累是CSO实现次优的显著且累加的预测因素。与切断术相比,用固定术治疗并发的肱二头肌病变使CSO实现的可能性增加78%。