Suppr超能文献

心力衰竭患者衰弱的危险因素及预测模型的建立

Risk factors and development of a predictive model for frailty in patients with heart failure.

作者信息

Jin Huanliang, Chen Song, Du Peichao, Xu Jijie, Zhou Hanying

机构信息

Department of Cardiology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine Shanghai, China.

Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine Shanghai, China.

出版信息

Am J Transl Res. 2025 May 15;17(5):3610-3618. doi: 10.62347/YMBE5232. eCollection 2025.

Abstract

OBJECTIVES

To identify factors influencing frailty in patients with heart failure (HF) and develop a predictive model for clinical use.

METHODS

A retrospective analysis was conducted on 350 HF patients at Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine between January 2020 and December 2023. Of these, 245 patients were allocated to the modeling group (n = 245) and 105 to the validation group (n = 105). In the modeling group, 135 patients were frail and 110 were non-frail. In the validation group, 47 patients were frail and 58 were non-frail. Logistic regression analysis was used to identify factors associated with frailty, and a nomogram was developed and validated to predict frailty risk.

RESULTS

Multivariate logistic regression analysis identified the following independent risk factors for frailty: fall history (OR: 0.101, 95% CI: 0.043-0.242, P < 0.001), advanced age (OR: 0.877, 95% CI: 0.828-0.928, P < 0.001), female sex (OR: 2.925, 95% CI: 1.294-6.613, P = 0.010), low hemoglobin levels (< 12 g/dL; OR: 2.547, 95% CI: 1.816-3.573, P < 0.001), and diabetes (OR: 3.202, 95% CI: 1.559-6.577, P = 0.002). Using these five variables, a nomogram was constructed to predict frailty risk, demonstrating an AUC of 0.822 (95% CI: 0.771-0.907).

CONCLUSION

Fall history, advanced age, female sex, low hemoglobin levels, and diabetes are significant independent risk factors for frailty in HF patients. The nomogram prediction model demonstrated strong predictive performance, with high accuracy and clinical applicability.

摘要

目的

确定影响心力衰竭(HF)患者衰弱的因素,并开发一种临床使用的预测模型。

方法

对2020年1月至2023年12月期间在上海宝山区中西医结合医院的350例HF患者进行回顾性分析。其中,245例患者被分配到建模组(n = 245),105例被分配到验证组(n = 105)。在建模组中,135例患者衰弱,110例非衰弱。在验证组中,47例患者衰弱,58例非衰弱。采用逻辑回归分析确定与衰弱相关的因素,并开发和验证了一个列线图以预测衰弱风险。

结果

多因素逻辑回归分析确定了以下衰弱的独立危险因素:跌倒史(OR:0.101,95%CI:0.043 - 0.242,P < 0.001)、高龄(OR:0.877,95%CI:0.828 - 0.928,P < 0.001)、女性(OR:2.925,95%CI:1.294 - 6.613,P = 0.010)、低血红蛋白水平(< 12 g/dL;OR:2.547,95%CI:1.816 - 3.573,P < 0.001)和糖尿病(OR:3.202,95%CI:1.559 - 6.577,P = 0.002)。使用这五个变量构建了一个列线图来预测衰弱风险,其AUC为0.822(95%CI:0.771 - 0.907)。

结论

跌倒史、高龄、女性、低血红蛋白水平和糖尿病是HF患者衰弱的重要独立危险因素。列线图预测模型显示出强大的预测性能,具有较高的准确性和临床适用性。

相似文献

8
Prognostic factors for return to work in breast cancer survivors.乳腺癌幸存者恢复工作的预后因素。
Cochrane Database Syst Rev. 2025 May 7;5(5):CD015124. doi: 10.1002/14651858.CD015124.pub2.

本文引用的文献

3
Global epidemiology of heart failure.心力衰竭的全球流行病学。
Nat Rev Cardiol. 2024 Oct;21(10):717-734. doi: 10.1038/s41569-024-01046-6. Epub 2024 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验