Suppr超能文献

使用机器学习探索膝关节运动学的非线性动力学结构

Exploring Non-linear Dynamical Structure for Knee Kinematics Using Machine Learning.

作者信息

Mayats-Alpay Liora, Soangra Rahul

机构信息

Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange 92866, CA, USA.

Crean College of Health and Behavioral Sciences, Fowler School of Engineering Chapman University, Orange 92866, CA, USA.

出版信息

2023 Int Conf Next Gener Electron NEleX (2023). 2023 Dec;2023. doi: 10.1109/nelex59773.2023.10421398.

Abstract

Human movement involves complex coordination between multiple limbs during execution. Human gait is cyclic, and the knee's movement inherently follows nonlinear dynamic behavior that linear models cannot adequately capture. In this study, advanced Machine Learning (ML) techniques were employed to combine the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm using Python to reveal governing equations of knee movement during walking. We gathered a single subject's knee motion data using infrared markers during normal walking. We utilized the PySINDy library to determine the governing equations and calculated the coefficient of dynamical systems associated with knee kinematics. Our results emphasize governing equations of dynamic systems in gait, particularly the knee kinematics during walking. We found that the SINDy algorithms could effectively reveal nonlinear dynamic systems in movement science.

摘要

人体运动在执行过程中涉及多个肢体之间的复杂协调。人类步态是周期性的,并且膝盖的运动本质上遵循线性模型无法充分捕捉的非线性动态行为。在本研究中,采用了先进的机器学习(ML)技术,结合使用Python的非线性动力学稀疏识别(SINDy)算法来揭示步行过程中膝盖运动的控制方程。我们在正常行走过程中使用红外标记收集了一名受试者的膝盖运动数据。我们利用PySINDy库来确定控制方程,并计算与膝盖运动学相关的动态系统系数。我们的结果强调了步态中动态系统的控制方程,特别是步行过程中的膝盖运动学。我们发现SINDy算法可以有效地揭示运动科学中的非线性动态系统。

相似文献

1
5
Prognostic factors for return to work in breast cancer survivors.乳腺癌幸存者恢复工作的预后因素。
Cochrane Database Syst Rev. 2025 May 7;5(5):CD015124. doi: 10.1002/14651858.CD015124.pub2.
6
9
Mucolytics for children with chronic suppurative lung disease.用于患有慢性化脓性肺病儿童的黏液溶解剂。
Cochrane Database Syst Rev. 2025 Mar 28;3(3):CD015313. doi: 10.1002/14651858.CD015313.pub2.

本文引用的文献

2
Machine learning methods to support personalized neuromusculoskeletal modelling.机器学习方法支持个性化神经肌肉骨骼建模。
Biomech Model Mechanobiol. 2020 Aug;19(4):1169-1185. doi: 10.1007/s10237-020-01367-8. Epub 2020 Jul 16.
7
Automated reverse engineering of nonlinear dynamical systems.非线性动力系统的自动逆向工程
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9943-8. doi: 10.1073/pnas.0609476104. Epub 2007 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验