Suppr超能文献

利用机器学习和真实世界数据预测筛查年龄以下个体的早发性结直肠癌:病例对照研究

Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control Study.

作者信息

Sun Chengkun, Mobley Erin, Quillen Michael, Parker Max, Daly Meghan, Wang Rui, Visintin Isabela, Awad Ziad, Fishe Jennifer, Parker Alexander, George Thomas, Bian Jiang, Xu Jie

机构信息

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Office 7020, Gainesville, FL, 32611, United States, 1 3526279467.

University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States.

出版信息

JMIR Cancer. 2025 Jun 19;11:e64506. doi: 10.2196/64506.

Abstract

BACKGROUND

Colorectal cancer is now the leading cause of cancer-related deaths among young Americans. Accurate early prediction and a thorough understanding of the risk factors for early-onset colorectal cancer (EOCRC) are vital for effective prevention and treatment, particularly for patients below the recommended screening age.

OBJECTIVE

Our study aims to predict EOCRC using machine learning (ML) and structured electronic health record data for individuals under the screening age of 45 years, with the aim of exploring potential risk and protective factors that could support early diagnosis.

METHODS

We identified a cohort of patients under the age of 45 years from the OneFlorida+ Clinical Research Consortium. Given the distinct pathology of colon cancer (CC) and rectal cancer (RC), we created separate prediction models for each cancer type with various ML algorithms. We assessed multiple prediction time windows (ie, 0, 1, 3, and 5 y) and ensured robustness through propensity score matching to account for confounding variables including sex, race, ethnicity, and birth year. We conducted a comprehensive performance evaluation using metrics including area under the curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, and F1-score. Both linear (ie, logistic regression, support vector machine) and nonlinear (ie, Extreme Gradient Boosting and random forest) models were assessed to enable rigorous comparison across different classification strategies. In addition, we used the Shapley Additive Explanations to interpret the models and identify key risk and protective factors associated with EOCRC.

RESULTS

The final cohort included 1358 CC cases with 6790 matched controls, and 560 RC cases with 2800 matched controls. The RC group had a more balanced sex distribution (2:3 male-to-female) compared to the CC group (2:5 male-to-female), and both groups showed diverse racial and ethnic representation. Our predictive models demonstrated reasonable results, with AUC scores for CC prediction of 0.811, 0.748, 0.689, and 0.686 at 0, 1, 3, and 5 years before diagnosis, respectively. For RC prediction, AUC scores were 0.829, 0.771, 0.727, and 0.721 across the same time windows. Key predictive features across both cancer types included immune and digestive system disorders, secondary malignancies, and underweight status. In addition, blood diseases emerged as prominent indicators specifically for CC.

CONCLUSIONS

Our findings demonstrate the potential of ML models leveraging electronic health record data to facilitate the early prediction of EOCRC in individuals under 45 years. By uncovering important risk factors and achieving promising predictive performance, this study provides preliminary insights that could inform future efforts toward earlier detection and prevention in younger populations.

摘要

背景

结直肠癌目前是美国年轻人中癌症相关死亡的主要原因。准确的早期预测以及对早发性结直肠癌(EOCRC)风险因素的透彻理解对于有效预防和治疗至关重要,特别是对于低于推荐筛查年龄的患者。

目的

我们的研究旨在使用机器学习(ML)和45岁以下个体的结构化电子健康记录数据来预测EOCRC,目的是探索可能支持早期诊断的潜在风险和保护因素。

方法

我们从OneFlorida+临床研究联盟中确定了一组45岁以下的患者。鉴于结肠癌(CC)和直肠癌(RC)的不同病理,我们使用各种ML算法为每种癌症类型创建了单独的预测模型。我们评估了多个预测时间窗口(即0、1、3和5年),并通过倾向得分匹配确保稳健性,以考虑包括性别、种族、民族和出生年份在内的混杂变量。我们使用包括曲线下面积(AUC)、敏感性、特异性、阳性预测值、阴性预测值和F1得分等指标进行了全面的性能评估。对线性(即逻辑回归、支持向量机)和非线性(即极端梯度提升和随机森林)模型都进行了评估,以便在不同分类策略之间进行严格比较。此外,我们使用Shapley加性解释来解释模型并识别与EOCRC相关的关键风险和保护因素。

结果

最终队列包括1358例CC病例及6790例匹配对照,以及560例RC病例及2800例匹配对照。与CC组(男性与女性比例为2:5)相比,RC组的性别分布更为均衡(男性与女性比例为2:3),且两组均呈现出不同的种族和民族构成。我们的预测模型显示出合理的结果,CC预测在诊断前0、1、3和5年的AUC得分分别为0.811、0.748、0.689和0.686。对于RC预测,在相同时间窗口内的AUC得分分别为0.829、0.771、0.727和0.721。两种癌症类型的关键预测特征包括免疫和消化系统疾病、继发性恶性肿瘤以及体重过轻状态。此外,血液疾病专门作为CC的突出指标出现。

结论

我们的研究结果表明,利用电子健康记录数据的ML模型有潜力促进对45岁以下个体的EOCRC进行早期预测。通过揭示重要风险因素并取得有前景的预测性能,本研究提供了初步见解,可为未来在年轻人群中进行更早检测和预防的努力提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验