Vansteelandt Stijn
Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, Ghent, Belgium.
Biometrics. 2025 Apr 2;81(2). doi: 10.1093/biomtc/ujaf071.
Advances in causal inference have largely ignored continuous exposures, apart from model-based approaches, which face criticism due to potential model misspecification. Model-free approaches based on modified treatment policies, such as uniformly shifting each subject's observed exposure, have emerged as promising alternatives. However, because such interventions are impractical, it is necessary to evaluate a range of possible shifts to generate actionable insights. To address this, we introduce models that parameterize the effects of shift interventions across varying magnitudes, coupled with assumption-lean estimation strategies. To ensure validity and interpretability under model misspecification, we tailor these to minimize (squared) bias in estimating the effects of realistic shifts. We employ debiased machine learning procedures for this but observe them to exhibit erratic behavior under certain data-generating mechanisms, prompting two key innovations. First, we propose a broadly applicable debiasing procedure that yields estimators with significantly improved finite-sample properties and is of independent methodological interest. Second, we develop debiased machine learning estimators for estimands with a more favorable efficiency bound, but more nuanced interpretation when models are misspecified. Unlike existing projection estimators, our methods avoid inverse exposure density weighting and do not demand tailored shift interventions to address positivity violations. Extensive simulations and a re-analysis of the Bangladesh Wash Benefits study demonstrate the effectiveness, stability, and utility of our approach. This work advances assumption-lean methods that balance validity, interpretability, and efficiency.
除了基于模型的方法外,因果推断的进展在很大程度上忽略了连续暴露,而基于模型的方法由于潜在的模型错误设定而面临批评。基于修改后的治疗策略的无模型方法,如统一改变每个受试者的观察暴露,已成为有前景的替代方法。然而,由于这种干预不切实际,有必要评估一系列可能的改变以产生可操作的见解。为了解决这个问题,我们引入了一些模型,这些模型对不同幅度的改变干预的效果进行参数化,并结合了少假设的估计策略。为了确保在模型错误设定下的有效性和可解释性,我们对这些模型进行调整,以尽量减少估计实际改变效果时的(平方)偏差。我们为此采用了去偏机器学习程序,但观察到它们在某些数据生成机制下表现出不稳定的行为,这促使了两项关键创新。首先,我们提出了一种广泛适用的去偏程序,该程序产生的估计器具有显著改善的有限样本性质,并且具有独立的方法学意义。其次,我们为具有更有利效率界但在模型错误设定时解释更细微的估计量开发了去偏机器学习估计器。与现有的投影估计器不同,我们的方法避免了逆暴露密度加权,并且不需要定制的改变干预来解决正性违反问题。广泛的模拟和对孟加拉国水与卫生效益研究的重新分析证明了我们方法的有效性、稳定性和实用性。这项工作推进了平衡有效性、可解释性和效率的少假设方法。