Suppr超能文献

通过利用突变的偏向性和机制降低生物生产稳定性的遗传异质性

Reduced Genetic Heterogeneity for Stable Bioproduction by Harnessing the Bias and Mechanism of Mutation.

作者信息

Cao Yanting, Wu Yaokang, Lv Xueqin, Li Jianghua, Liu Long, Du Guocheng, Chen Jian, Liu Yanfeng

机构信息

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Science Center for Future Foods, Jiangnan University, Wuxi, China.

出版信息

Microb Biotechnol. 2025 Jun;18(6):e70162. doi: 10.1111/1751-7915.70162.

Abstract

Microbial bioproduction is an important approach to realising green biomanufacturing. However, poor bioproduction stability caused by genetic heterogeneity is one of the important factors limiting its industrial-scale applications. Here, two methods have been developed to reduce genetic heterogeneity in Bacillus subtilis. SiteMuB (the site-dependent mutation bias) was proposed to enable stable genome integration expression by analysing the spontaneous mutation rate of the same DNA sequences integrated at different genome sites. Additionally, robustly growing chassis with low mutation rates (ChassisLMR) were developed by deleting unstable elements and enhancing DNA repair. These methods were then employed to improve the production stability of small molecule metabolites and proteins. In N-acetylneuraminic acid production, after 76 generations of cell division, corresponding to the number of cell generations required for > 200-m industrial-scale production, strains with SiteMuB and ChassisLMR achieved 15.9-fold and 11.1-fold higher titres than that of the starting strain, respectively. Moreover, by improving the genetic stability of burdensome T7RNAP, combining SiteMuB with ChassisLMR stably maintained the T7 expression system for up to 74 generations, representing a 2.1-fold improvement. Furthermore, ChassisLMR improved the production stability of GFP on the plasmids by 1.38-fold. Overall, SiteMuB and ChassisLMR provide broadly applicable and highly efficient ways to achieve stable bioproduction by reducing genetic heterogeneity.

摘要

微生物生物制造是实现绿色生物制造的重要途径。然而,由遗传异质性导致的生物制造稳定性差是限制其工业规模应用的重要因素之一。在此,已开发出两种方法来降低枯草芽孢杆菌中的遗传异质性。提出了位点依赖突变偏向性(SiteMuB),通过分析整合在不同基因组位点的相同DNA序列的自发突变率来实现稳定的基因组整合表达。此外,通过删除不稳定元件并增强DNA修复,开发出了具有低突变率的稳健生长底盘(ChassisLMR)。然后采用这些方法来提高小分子代谢物和蛋白质的生产稳定性。在N-乙酰神经氨酸生产中,经过76代细胞分裂,这相当于超过200立方米工业规模生产所需的细胞代数,具有SiteMuB和ChassisLMR的菌株的产量分别比起始菌株高15.9倍和11.1倍。此外,通过提高繁重的T7RNA聚合酶的遗传稳定性,将SiteMuB与ChassisLMR相结合可将T7表达系统稳定维持多达74代,提高了2.1倍。此外,ChassisLMR将质粒上绿色荧光蛋白的生产稳定性提高了1.38倍。总体而言,SiteMuB和ChassisLMR通过降低遗传异质性提供了广泛适用且高效的方法来实现稳定的生物制造。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验