Suppr超能文献

聚(七嗪酰亚胺)钠框架增强结晶度对一氧化碳的吸附作用

Crystallinity-Enhanced CO Adsorption by Sodium Poly(Heptazine Imide) Frameworks.

作者信息

Ouro Pedro, Cuevas Álvaro, Liessem Johannes, Mitoraj Dariusz, Beranek Radim, Díaz Eva, Ordóñez Salvador, Marin-Montesinos Ildefonso, Pereira Daniel, Sardo Mariana, Krivtsov Igor, Mafra Luís, Ilkaeva Marina

机构信息

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.

Department of Chemical and Environmental Engineering, University of Oviedo, 33006, Oviedo, Spain.

出版信息

ChemSusChem. 2025 Aug 6;18(16):e202500775. doi: 10.1002/cssc.202500775. Epub 2025 Jul 12.

Abstract

This work presents sodium poly(heptazine imide) (NaPHI)-based materials, synthesized in a NaCl medium, as highly effective platforms for CO capture. High crystallinity-an often-overlooked aspect in PHI frameworks-is identified as a key factor governing CO adsorption capacity in microporous structures. Thermogravimetric analysis and manometric studies reveal a CO uptake of ≈3.8 mmol g, at 1 bar and 25 °C, surpassing most reported PHI-based adsorbents under similar conditions. Exchanging Na with K or Rb preserves CO adsorption performance, whereas Cs incorporation induces structural distortion, greatly reducing CO adsorption capacity in PHI. These materials exhibit excellent cyclic stability (20 cycles) without degradation and CO adsorption capacity loss. Notably, at flue gas-relevant temperature (100 °C), NaPHI attains a CO capacity of 2.1 mmol g, doubling the performance of benchmark Zeolite 13X (1.1 mmol g). Ideal Adsorbed Solution Theory confirms remarkable CO/N selectivity (≈3.8 mmol g vs typical N adsorption of 0.3 mmol g), a critical property for postcombustion CO capture. These findings position PHI-based materials as a disruptive platform for CO adsorption, offering 1) straightforward synthesis from readily available precursors, 2) promising scalability, and 3) outstanding performance.

摘要

这项工作展示了在氯化钠介质中合成的基于聚(七嗪酰亚胺)钠(NaPHI)的材料,作为用于捕获二氧化碳的高效平台。高结晶度——这在七嗪酰亚胺框架中常常被忽视——被确定为控制微孔结构中二氧化碳吸附能力的关键因素。热重分析和压力测量研究表明,在1巴和25°C下,该材料对二氧化碳的吸收量约为3.8 mmol/g,超过了在类似条件下报道的大多数基于七嗪酰亚胺的吸附剂。用钾或铷取代钠可保持二氧化碳吸附性能,而掺入铯会导致结构变形,大大降低七嗪酰亚胺中二氧化碳的吸附能力。这些材料表现出优异的循环稳定性(20个循环),且没有降解和二氧化碳吸附能力损失。值得注意的是,在与烟道气相关的温度(100°C)下,NaPHI的二氧化碳吸附量达到2.1 mmol/g,是基准沸石13X(1.1 mmol/g)性能的两倍。理想吸附溶液理论证实了其对二氧化碳/氮气具有显著的选择性(约3.8 mmol/g,而典型的氮气吸附量为0.3 mmol/g),这是燃烧后二氧化碳捕获的关键特性。这些发现将基于七嗪酰亚胺的材料定位为一种具有颠覆性的二氧化碳吸附平台,具有以下优点:1)由易得的前驱体直接合成;2)具有良好的可扩展性;3)性能卓越。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81e2/12330333/ae6174ee0deb/CSSC-18-e202500775-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验