Sato Shiho, Ooka Tadao, Zamami Yoshito, Hamano Hirofumi, Hayashi Fumikazu, Eguchi Eri, Funakubo Narumi, Ohira Tetsuya
Department of Epidemiology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima, 960-1295, Japan.
Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.
Drug Saf. 2025 Jun 19. doi: 10.1007/s40264-025-01572-3.
BACKGROUND AND OBJECTIVES: SCORe of Toxic Epidermal Necrolysis (SCORTEN) and ABCD-10 have been developed as scoring systems for predicting mortality associated with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN). These scores were developed based on a small number of patients; hence, their generalizability requires further exploration. The present study used three algorithms, including a machine learning method, to construct a mortality prediction model for SJS/TEN and to identify new candidate predictors of mortality from severe drug eruptions.
Data from 5966 patients with SJS or TEN were extracted from the Japanese Adverse Drug Event Report Database. A mortality prediction model was then constructed using stepwise regression, L1 regularized-logistic regression, and random forests based on the patient characteristics (e.g., age, sex, primary disease, adverse events, drug classification, route of administration) and outcomes (death).
The mortality prediction models for SJS/TEN identified sex (men), primary disease (hyperlipidemia, diabetes mellitus, renal dysfunction, and malignant tumors), adverse events (renal dysfunction, liver dysfunction, respiratory dysfunction, bacteremia/sepsis, disseminated intravascular coagulation syndrome, shock, and multiple organ failure), number of concomitant drugs, and route of administration (injection) as common factors associated with mortality.
Our findings showed that sex, hyperlipidemia as the primary disease, number of concomitant drugs, use of antipyretic analgesics, and route of administration may be considered as predictors of mortality in patients with SJS/TEN. The external validity of these factors needs to be examined in the future.
背景与目的:中毒性表皮坏死松解症评分系统(SCORTEN)和ABCD - 10已被开发用于预测与史蒂文斯 - 约翰逊综合征(SJS)或中毒性表皮坏死松解症(TEN)相关的死亡率。这些评分系统是基于少数患者开发的;因此,它们的可推广性需要进一步探索。本研究使用了三种算法,包括机器学习方法,来构建SJS/TEN的死亡率预测模型,并从严重药物疹中识别新的死亡候选预测因素。
从日本药品不良事件报告数据库中提取了5966例SJS或TEN患者的数据。然后根据患者特征(如年龄、性别、原发性疾病、不良事件、药物分类、给药途径)和结局(死亡),使用逐步回归、L1正则化逻辑回归和随机森林构建死亡率预测模型。
SJS/TEN的死亡率预测模型确定性别(男性)、原发性疾病(高脂血症、糖尿病、肾功能不全和恶性肿瘤)、不良事件(肾功能不全、肝功能不全、呼吸功能不全、菌血症/败血症、弥散性血管内凝血综合征、休克和多器官功能衰竭)、合并用药数量和给药途径(注射)是与死亡率相关的常见因素。
我们的研究结果表明,性别、作为原发性疾病的高脂血症、合并用药数量、使用解热镇痛药和给药途径可被视为SJS/TEN患者死亡率的预测因素。这些因素的外部有效性未来需要进一步研究。