Suppr超能文献

心电图异常和生物标志物可实现对急性肺栓塞正常血压患者的快速风险分层。

ECG Abnormalities and Biomarkers Enable Rapid Risk Stratification in Normotensive Patients With Acute Pulmonary Embolism.

作者信息

Jiao Siqi, Liu Ying, He Haoming, Li Qing, Wang Zhe, Chen Yinong, Zhu Longyang, Zheng Shuwen, Yang Furong, Zhai Zhenguo, Sun Yihong

机构信息

Peking University Health Science Center, China-Japan Friendship Hospital, Beijing, China.

Beijing Ditan Hospital, Capital Medical University, Beijing, China.

出版信息

Clin Respir J. 2025 Jun;19(6):e70060. doi: 10.1111/crj.70060.

Abstract

BACKGROUND

The patients with suspected pulmonary embolism (PE) were usually screened using electrocardiogram (ECG) and blood panel of D-dimer, troponin, and blood gas analysis in the emergency.

OBJECTIVES

This study aimed to explore a rapid risk model to predict in-hospital adverse events for normotensive PE patients.

METHODS

Patients with acute PE having normal blood pressure on appearance were retrospectively enrolled at China-Japan Friendship Hospital from January 2017 to February 2020. The in-hospital adverse events were defined as death and clinical deterioration during hospitalization. The risk model for in-hospital adverse events was generated by multivariate regression analysis. The discrimination ability of the model was compared with PESI, Bova, and FAST risk score, and evaluated by the receiver operating characteristic curve (ROC), net reclassification improvement (NRI), and integrated discrimination improvement index (IDI).

RESULTS

Of the 213 patients, 35 (16.4%) experienced in-hospital adverse events,y including 15 deaths. The average age was 69 ± 19 years, and 118 (44.6%) were females. Multiple logistic regression analysis showed that independent risk factors associated with in-hospital adverse events were low QRS voltage in ECG (OR: 5.321; 95% CI: 1.608-7.310), positive age-adjusted D-dimer (OR: 2.061; 95% CI: 0.622-6.836), positive troponin (OR: 3.504; 95% CI: 1.744-8.259), and PaO/FiO < 300 (OR: 3.268; 95% CI: 0.978-5.260). The ROC analysis showed that the AUC of the new model (0.847, 95% CI: 0.786-0.901) was better than the PESI score (0.628, 95% CI: 0.509-0.769), the Bova score (0.701, 95% CI: 0.594-0.808), and the FAST score (0.775 95% CI: 0.690-0.859).

CONCLUSION

ECG abnormalities and biomarkers on admission may provide a rapid and effective approach to identify patients with poor prognoses during hospitalization.

摘要

背景

疑似肺栓塞(PE)患者通常在急诊时通过心电图(ECG)以及D-二聚体、肌钙蛋白血液检测和血气分析进行筛查。

目的

本研究旨在探索一种快速风险模型,以预测血压正常的PE患者的院内不良事件。

方法

回顾性纳入2017年1月至2020年2月在中国-日本友好医院就诊的外观上血压正常的急性PE患者。院内不良事件定义为住院期间死亡和临床恶化。通过多因素回归分析生成院内不良事件风险模型。将该模型的辨别能力与PESI、Bova和FAST风险评分进行比较,并通过受试者工作特征曲线(ROC)、净重新分类改善(NRI)和综合辨别改善指数(IDI)进行评估。

结果

213例患者中,35例(16.4%)发生院内不良事件,其中15例死亡。平均年龄为69±19岁,女性118例(44.6%)。多因素logistic回归分析显示,与院内不良事件相关的独立危险因素为ECG低QRS电压(OR:5.321;95%CI:1.608 - 7.310)、年龄校正后D-二聚体阳性(OR:2.061;95%CI:0.622 - 6.836)、肌钙蛋白阳性(OR:3.504;CI:1.744 - 8.259)和PaO/FiO<300(OR:3.268;95%CI:0.978 - 5.260)。ROC分析显示,新模型的AUC(0.847,95%CI:0.786 - 0.901)优于PESI评分(0.628,95%CI:0.509 - 0.769)、Bova评分(0.701,95%CI:0.594 - 0.808)和FAST评分(0.775,95%CI:0.690 - 0.859)。

结论

入院时的ECG异常和生物标志物可能为识别住院期间预后不良的患者提供一种快速有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6713/12178209/7a2565f0dbd3/CRJ-19-e70060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验