Varidel Mathew, An Victor, Hickie Ian B, Cripps Sally, Marchant Roman, Scott Jan, Crouse Jacob J, Poulsen Adam, O'Dea Bridianne, McKenna Sarah, Iorfino Frank
Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Sydney, 2050, Australia, 61 0293510774.
Human Technology Institute, University of Technology Sydney, Sydney, Australia.
J Med Internet Res. 2025 Jun 19;27:e71305. doi: 10.2196/71305.
Digital mental health tools promise to enhance the reach and quality of care. Current tools often recommend content to individuals, typically using generic knowledge-based systems or predictive artificial intelligence (AI). However, predictive AI is problematic for interventional recommendations as cause-effect relationships can be confounded in observed data. Therefore, causal AI is required to compare future outcomes under different interventions.
We aimed to develop a causal AI recommendation system that uses an individual's current presentation, their preferences, and the learned dynamics between domains to rank interventions.
We frame the recommendation problem within a Bayesian decision-theoretic framework, whereby a preference ordering of decisions is estimated using the expected utility of outcomes under interventions. The causal processes are assumed to follow a structural causal model, where the posterior distribution of structural causal models is estimated using a Markov chain Monte Carlo method. Expected utilities under interventions are estimated using a do-operation, which estimates the effects of changing a variable on outcomes, while accounting for confounders. We apply our approach to rank domains relating to mental health and well-being as intervention targets for adults (n=619) who used the Innowell Fitness app between September 2021 to September 2023 and completed a questionnaire at 2 time points (1 wk-6 mo from baseline).
The causal AI recommendation system recommends intervention targets as a function of a user's baseline presentation, the causal effects of the intervention on itself and other domains, and the utility function. In our example, psychological distress was typically the optimal intervention target in complex cases where multiple domains were unhealthy at baseline, due to it affecting multiple domains with paths to personal functioning (probability [p] of path; ppath=86%), social support (ppath=92%), sleep (ppath=88%), and physical activity (ppath=86%). The probability of being the optimal intervention target was personal functioning (popt=30%), psychological distress (popt=29%), social support (popt=18%), nutrition (popt=9.6%), substance use (popt=6.7%), sleep (popt=4.5%), and physical activity (popt=2.2%).
This work illustrates the use of causality and decision-theoretic principles to personalize interventions in digital mental health tools.
数字心理健康工具有望扩大护理范围并提高护理质量。当前的工具通常向个人推荐内容,通常使用基于通用知识的系统或预测性人工智能(AI)。然而,预测性AI用于干预建议时存在问题,因为因果关系在观测数据中可能会混淆。因此,需要因果AI来比较不同干预下的未来结果。
我们旨在开发一种因果AI推荐系统,该系统利用个人当前的表现、他们的偏好以及各领域之间已了解的动态关系对干预措施进行排序。
我们将推荐问题置于贝叶斯决策理论框架内,通过干预下结果的预期效用估计决策的偏好排序。假设因果过程遵循结构因果模型,使用马尔可夫链蒙特卡罗方法估计结构因果模型的后验分布。使用do操作估计干预下的预期效用,该操作估计改变一个变量对结果的影响,同时考虑混杂因素。我们将我们的方法应用于对与心理健康和幸福相关的领域进行排序,这些领域作为2021年9月至2023年9月期间使用Innowell Fitness应用程序并在两个时间点(基线后1周 - 6个月)完成问卷的成年人(n = 619)的干预目标。
因果AI推荐系统根据用户的基线表现、干预对自身和其他领域的因果效应以及效用函数来推荐干预目标。在我们的示例中,在基线时多个领域不健康的复杂情况下,心理困扰通常是最佳干预目标,因为它通过影响多个领域进而影响个人功能(路径概率[p];ppath = 86%)、社会支持(ppath = 92%)、睡眠(ppath = 88%)和身体活动(ppath = 86%)。成为最佳干预目标的概率分别为个人功能(popt = 30%)、心理困扰(popt = 29%)、社会支持(popt = 18%)、营养(popt = 9.6%)、物质使用(popt = 6.7%)、睡眠(popt = 4.5%)和身体活动(popt = 2.2%)。
这项工作说明了如何利用因果关系和决策理论原则在数字心理健康工具中实现个性化干预。