Ulrich Paul, Zink Alexander, Biedermann Tilo, Sitaru Sebastian
Technical University of Munich, TUM School of Medicine and Health, Department of Dermatology and Allergy, Munich, Germany.
Department of Dermatology and Venereology, University Hospital Regensburg, Regensburg, Germany.
NPJ Digit Med. 2025 Jun 20;8(1):378. doi: 10.1038/s41746-025-01770-4.
Human skin tone is influenced by genetic, environmental, and cultural factors and plays a key role in dermatology due to variation in disease presentation across skin tones. The widely used Fitzpatrick scale, based on UV response, classifies only a small number of skin types, limiting its ability to capture the full diversity of skin tones. This study introduces an algorithm for automated skin tone assessment by calculating the Individual Typology Angle (ITA) from CIELAB color values using DensePose and OpenFace. ITA values are mapped to both Fitzpatrick and Monk skin tone scales. Validation on 3D body scans and AI-generated images showed high agreement with Monk classifications but less consistent alignment with Fitzpatrick types. Despite class imbalance, the algorithm reliably classifies skin tone to the Monk scale and holds potential for applications in teledermatology, clinical research, and personalized medicine. Further research is warranted to externally validate our algorithm.
人类肤色受遗传、环境和文化因素影响,由于不同肤色的疾病表现存在差异,其在皮肤病学中起着关键作用。广泛使用的基于紫外线反应的菲茨帕特里克量表仅对少数皮肤类型进行分类,限制了其捕捉肤色全部多样性的能力。本研究引入一种算法,通过使用密集姿势(DensePose)和开源面部分析工具包(OpenFace)从CIELAB颜色值计算个体类型角度(ITA)来自动评估肤色。ITA值被映射到菲茨帕特里克和蒙克肤色量表。在3D身体扫描和人工智能生成图像上的验证表明,与蒙克分类高度一致,但与菲茨帕特里克类型的一致性较低。尽管存在类别不平衡,该算法仍能可靠地将肤色分类到蒙克量表,在远程皮肤病学、临床研究和个性化医疗中具有应用潜力。有必要进行进一步研究以对我们的算法进行外部验证。