Suppr超能文献

社区科学助力将美国密歇根州数千个湖泊长达78年的鱼类和栖息地数据数字化。

Community science helps digitize 78 years of fish and habitat data for thousands of lakes in Michigan, USA.

作者信息

King Katelyn B S, Schell Justin, Wehrly Kevin E, Lenard Michael, Singer Randal, López-Fernández Hernán, Thomer Andrea K, Alofs Karen M

机构信息

Institute for Fisheries Research, Michigan Department of Natural Resources, and University of Michigan, Ann Arbor, USA.

University of Michigan Library, Ann Arbor, USA.

出版信息

Sci Data. 2025 Jun 19;12(1):1038. doi: 10.1038/s41597-025-05241-z.

Abstract

North temperate lakes are an important resource across North America and Eurasia, however, their ecosystems are declining and projected to continue to face further impacts under future land use and climate change. Understanding how lake ecosystems respond to environmental stressors and management actions is critical for identifying resilient lakes and developing adaptation strategies. However, the ability to manage lakes is hampered by a lack of historical information. We describe our methods to produce a usable (i.e. machine-readable, uniform, and standardized) historical dataset of inland lake habitat and fish communities across the State of Michigan, United States of America. Historical data were originally archived as index cards at the Michigan Department of Natural Resources. Using our workflows, the cards were transcribed by community scientists and subsequently curated. We focused on three types of data records: lake summary cards (lake characteristics and fish species present), fish collection cards (gear, effort, and fish species counts), and fish growth cards (species length-at-age) from >1,300 lakes across 78 years (1921-1998).

摘要

北温带湖泊是北美和欧亚大陆的重要资源,然而,它们的生态系统正在衰退,预计在未来土地利用和气候变化的影响下还将继续面临进一步冲击。了解湖泊生态系统如何应对环境压力源和管理行动,对于识别具有恢复力的湖泊并制定适应策略至关重要。然而,湖泊管理能力因缺乏历史信息而受到阻碍。我们描述了生成美国密歇根州内陆湖泊栖息地和鱼类群落可用(即机器可读、统一且标准化)历史数据集的方法。历史数据最初作为索引卡存档于密歇根自然资源部。利用我们的工作流程,这些卡片由社区科学家转录并随后进行整理。我们重点关注三种类型的数据记录:湖泊总结卡(湖泊特征和现存鱼类物种)、鱼类采集卡(渔具、捕捞努力量和鱼类物种数量)以及来自78年(1921年至1998年)间1300多个湖泊的鱼类生长卡(各年龄的物种体长)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae31/12179291/549fa7c5cd99/41597_2025_5241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验