Kumar Ankaj, Gupta Anshu, Saini Anurag, Selvaraju Sudhagar, Sethi Kalyan Kumar, Gulbake Arvind
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, India.
Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, India.
Nanoscale. 2025 Jul 3;17(26):15960-15987. doi: 10.1039/d5nr01407g.
This study includes a novel chemo-herbal combination using biochanin A (BCA) and lenvatinib (LTB) to synergize each other's anti-cancer activities. Phenylboronic acid (PBA)-functionalized poly (lactic--glycolic acid) (PLGA) was employed to specifically target the sialic acid overexpressed in lung cancer. ATR, DSC, and NMR studies confirmed the successful synthesis of PBA-PLGA, which was further utilized for the development of BCA and LTB co-loaded PBA-PLGA nanoparticles (PBA-PLGA-BCA-LTB NPs). A higher docking score between LTB and different proteins of endothelial growth factor receptors (EGFRs) and a combination index value <1 supported the chemo-herbal combination regimen for lung cancer. In addition, the significantly higher protein expression (cle-PARP and cle-cas-3) from BCA-LTB explains the strong apoptotic effect. The optimized PBA-PLGA-BCA-LTB NPs exhibited a 182.2 ± 6.88 nm, 0.134 ± 0.074 polydispersity index, and -32.2 ± 3.40 mV zeta potential. ATR, DSC, and PXRD studies confirmed the amorphous dispersion of BCA-LTB in the PBA-PLGA matrix. A higher binding constant and rate coefficient, with a Δ of -5.69 ± 0.183 (kcal mol), Δ of -4.98 (kcal mol), and -Δ of 0.706 (kcal mol) using isothermal titration calorimetry (ITC) explained the enthalpy-driven specificity of PBA-PLGA towards sialic acid (Neu5AC). The prepared NPs showed physical stability at 4 ± 2 °C and were non-hemolytic and stable with plasma proteins. Significantly higher cytotoxicity and cellular uptake were observed for PBA-PLGA-BCA-LTB NPs in contrast to PLGA-BCA-LTB NPs and coarse-BCA-LTB. The PBA-PLGA-BCA-LTB NPs also exhibited anti-migration and invasion potential for A549 cells. pharmacokinetic studies indicated an increase in plasma half-life of the drugs and a decrease in hematological toxicities using PBA-PLGA-BCA-LTB NPs compared to free BCA-LTB. In summary, the PBA-PLGA-BCA-LTB NPs represent a biocompatible, potential, cancer-targeted, and effective treatment option for lung cancer treatment.
本研究包括一种新型的化学-草药联合用药,使用鹰嘴豆芽素A(BCA)和乐伐替尼(LTB)来协同增强彼此的抗癌活性。采用苯基硼酸(PBA)功能化的聚乳酸-乙醇酸共聚物(PLGA)特异性靶向肺癌中过表达的唾液酸。衰减全反射(ATR)、差示扫描量热法(DSC)和核磁共振(NMR)研究证实了PBA-PLGA的成功合成,其进一步用于开发负载BCA和LTB的PBA-PLGA纳米颗粒(PBA-PLGA-BCA-LTB NPs)。LTB与内皮生长因子受体(EGFRs)不同蛋白之间较高的对接分数以及联合指数值<1支持了肺癌的化学-草药联合治疗方案。此外,BCA-LTB显著更高的蛋白表达(裂解的聚ADP核糖聚合酶(cle-PARP)和裂解的半胱天冬酶-3(cle-cas-3))解释了其强烈的凋亡作用。优化后的PBA-PLGA-BCA-LTB NPs呈现出182.2±6.88 nm的粒径、0.134±0.074的多分散指数以及-32.2±3.40 mV的zeta电位。ATR、DSC和粉末X射线衍射(PXRD)研究证实了BCA-LTB在PBA-PLGA基质中的无定形分散。使用等温滴定量热法(ITC)测得的较高结合常数和速率系数,其Δ为-5.69±0.183(千卡/摩尔)、Δ为-4.98(千卡/摩尔)以及-Δ为0.706(千卡/摩尔),解释了PBA-PLGA对唾液酸(Neu5AC)的焓驱动特异性。所制备的纳米颗粒在4±2℃下表现出物理稳定性,且无溶血现象,与血浆蛋白稳定结合。与PLGA-BCA-LTB NPs和粗品BCA-LTB相比,PBA-PLGA-BCA-LTB NPs表现出显著更高毒性和细胞摄取量。PBA-PLGA-BCA-LTB NPs对A549细胞还表现出抗迁移和侵袭潜力。药代动力学研究表明,与游离的BCA-LTB相比,使用PBA-PLGA-BCA-LTB NPs可使药物的血浆半衰期延长,血液学毒性降低。总之,PBA-PLGA-BCA-LTB NPs代表了一种用于肺癌治疗的生物相容性好、有潜力、靶向癌症且有效的治疗选择。