Huai Ximing, Jiang Lei, Wang Chao, Chen Peng, Li Hanchi
Ningbo Key Laboratory of Intelligent Manufacturing of Textiles and Garments, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China.
Laboratory of Intelligent Home Appliances, College of Science and Technology, Ningbo University, Ningbo, Zhejiang, China.
Front Physiol. 2025 Jun 5;16:1596150. doi: 10.3389/fphys.2025.1596150. eCollection 2025.
Cardiovascular diseases (CVDs) remain a leading cause of global mortality, underscoring the need for accurate and efficient diagnostic tools. This study presents an enhanced heart sound classification framework based on a Convolutional Neural Network (CNN) integrated with the Convolutional Block Attention Module (CBAM). Heart sound recordings from the PhysioNet CinC 2016 dataset were segmented and transformed into spectrograms, and twelve CNN models with varying CBAM configurations were systematically evaluated. Experimental results demonstrate that selectively integrating CBAM into early and mid-level convolutional blocks significantly improves classification performance. The optimal model, with CBAM applied after Conv Blocks 1-1, 1-2, and 2-1, achieved an accuracy of 98.66%, outperforming existing state-of-the-art methods. Additional validation using an independent test set from the PhysioNet 2022 database confirmed the model's generalization capability, achieving an accuracy of 95.6% and an AUC of 96.29%. Furthermore, T-SNE visualizations revealed clear class separation, highlighting the model's ability to extract highly discriminative features. These findings confirm the efficacy of attention-based architectures in medical signal classification and support their potential for real-world clinical applications.
心血管疾病(CVDs)仍然是全球死亡的主要原因,这凸显了对准确高效诊断工具的需求。本研究提出了一种基于卷积神经网络(CNN)并集成卷积块注意力模块(CBAM)的增强型心音分类框架。对来自PhysioNet CinC 2016数据集的心音记录进行分割并转换为频谱图,并对具有不同CBAM配置的12个CNN模型进行了系统评估。实验结果表明,将CBAM选择性地集成到早期和中级卷积块中可显著提高分类性能。在第1-1、1-2和2-1卷积块之后应用CBAM的最优模型,准确率达到98.66%,优于现有的最先进方法。使用来自PhysioNet 2022数据库的独立测试集进行的额外验证证实了该模型的泛化能力,准确率达到95.6%,曲线下面积(AUC)为96.29%。此外,T-SNE可视化显示了清晰的类别分离,突出了该模型提取高度判别性特征的能力。这些发现证实了基于注意力的架构在医学信号分类中的有效性,并支持其在实际临床应用中的潜力。