Suppr超能文献

一种用于从心电图信号中去除肌肉伪迹的增强深度学习框架,集成了ResNet、GCAB和双向长短期记忆网络(BI-LSTM)。

An enhanced deep learning framework for muscle artifact removal from ECG signal integrating resnet, GCAB, and BI-LSTM.

作者信息

Malghan Pavan G, Hota Malaya Kumar

机构信息

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

出版信息

Phys Eng Sci Med. 2025 Jun 23. doi: 10.1007/s13246-025-01584-4.

Abstract

Electrocardiogram (ECG) signals are significantly distorted during recording by muscle artifact (MA), causing signal frequency overlap and making it difficult to interpret ECG data correctly. Deep learning (DL) methods for signal processing have shown promising results. However, there is a significant necessity in building proper DL models with appropriate datasets. We propose an enhanced hybrid deep learning framework called HRGB-Net based on residual neural network (ResNet), global channel attention block (GCAB), and bidirectional-long-short-term memory (Bi-LSTM) blocks for filtering the MA noise from ECG by using three distinctive MIT-BIH real-time datasets from the PhysioNet repository by creating suitable datasets for training. We use both raw ECG data and short-time Fourier-transformed (STFT) ECG data for comparative analysis with three neural network models: a convolutional neural Network (CNN), a fully connected neural network (FCNN), and a regression-based LSTM (Reg-LSTM-DNN) model to assess the proposed model. The signal-to-noise ratio (SNR) of noisy ECG signals is varied from - 7dB to 2dB to analyze the mean square error (MSE) and correlation coefficient (CC) performances after the denoising process. Our proposed method utilizes the regression ability to remove MA noise and generate a clean ECG signal with improved values of these signal parameters. The STFT-trained and tested ECG data shows better results than the raw ECG data for efficiently eliminating the MA with a 98.82% correlation coefficient and optimal MSE value of 0.053068. The results prove our proposed HRGB-Net model's remarkable ability to outperform the neural network models and other standard techniques.

摘要

心电图(ECG)信号在记录过程中会因肌肉伪迹(MA)而严重失真,导致信号频率重叠,难以正确解读心电图数据。用于信号处理的深度学习(DL)方法已显示出有前景的结果。然而,使用适当的数据集构建合适的DL模型非常必要。我们提出了一种名为HRGB-Net的增强型混合深度学习框架,该框架基于残差神经网络(ResNet)、全局通道注意力块(GCAB)和双向长短期记忆(Bi-LSTM)块,通过使用来自PhysioNet存储库的三个独特的MIT-BIH实时数据集创建合适的训练数据集,来过滤心电图中的MA噪声。我们使用原始心电图数据和短时傅里叶变换(STFT)心电图数据与三种神经网络模型进行对比分析:卷积神经网络(CNN)、全连接神经网络(FCNN)和基于回归的LSTM(Reg-LSTM-DNN)模型,以评估所提出的模型。有噪声的心电图信号的信噪比(SNR)在-7dB至2dB之间变化,以分析去噪过程后的均方误差(MSE)和相关系数(CC)性能。我们提出的方法利用回归能力去除MA噪声,并生成具有改善的这些信号参数值的干净心电图信号。经STFT训练和测试的心电图数据在有效消除MA方面显示出比原始心电图数据更好的结果,相关系数为98.82%,最佳MSE值为0.053068。结果证明了我们提出的HRGB-Net模型具有超越神经网络模型和其他标准技术的卓越能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验