Suppr超能文献

使用语义网技术对位错动力学数据进行建模。

Modeling dislocation dynamics data using semantic web technologies.

作者信息

Ihsan Ahmad Zainul, Fathalla Said, Sandfeld Stefan

机构信息

Institute of Advanced Simulation-Materials Data Science and Informatics (IAS-9), Forschungszentrum Jülich, Jülich, Germany.

Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany.

出版信息

Neural Comput Appl. 2025;37(18):11737-11753. doi: 10.1007/s00521-024-10674-5. Epub 2024 Dec 14.

Abstract

The research in Materials Science and Engineering focuses on the design, synthesis, properties, and performance of materials. An important class of materials that is widely investigated are crystalline materials, including metals and semiconductors. Crystalline material typically contains a specific type of defect called "dislocation". This defect significantly affects various material properties, including bending strength, fracture toughness, and ductility. Researchers have devoted a significant effort in recent years to understanding dislocation behaviour through experimental characterization techniques and simulations, e.g., dislocation dynamics simulations. This paper presents how data from dislocation dynamics simulations can be modelled using semantic web technologies through annotating data with ontologies. We extend the dislocation ontology by adding missing concepts and aligning it with two other domain-related ontologies (i.e., the Elementary Multi-perspective Material Ontology and the Materials Design Ontology), allowing for efficiently representing the dislocation simulation data. Moreover, we present a real-world use case for representing the discrete dislocation dynamics data as a knowledge graph (DisLocKG) which can depict the relationship between them. We also developed a SPARQL endpoint that brings extensive flexibility for querying DisLocKG.

摘要

材料科学与工程领域的研究聚焦于材料的设计、合成、性质及性能。一类被广泛研究的重要材料是晶体材料,包括金属和半导体。晶体材料通常包含一种特定类型的缺陷,称为“位错”。这种缺陷会显著影响各种材料性能,包括弯曲强度、断裂韧性和延展性。近年来,研究人员通过实验表征技术和模拟,如位错动力学模拟,致力于理解位错行为。本文介绍了如何通过使用本体对标数据,利用语义网技术对来自位错动力学模拟的数据进行建模。我们通过添加缺失的概念并将其与另外两个领域相关的本体(即基本多视角材料本体和材料设计本体)对齐,扩展了位错本体,从而能够有效地表示位错模拟数据。此外,我们展示了一个实际应用案例,即将离散位错动力学数据表示为一个知识图谱(DisLocKG),它可以描绘这些数据之间的关系。我们还开发了一个SPARQL端点,为查询DisLocKG带来了极大的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/12174205/9cfaba51a145/521_2024_10674_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验