Fan Haidong, Wang Qingyuan, El-Awady Jaafar A, Raabe Dierk, Zaiser Michael
Department of Mechanics, Sichuan University, Chengdu, China.
Department Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
Nat Commun. 2021 Mar 23;12(1):1845. doi: 10.1038/s41467-021-21939-1.
Dislocation glide is a general deformation mode, governing the strength of metals. Via discrete dislocation dynamics and molecular dynamics simulations, we investigate the strain rate and dislocation density dependence of the strength of bulk copper and aluminum single crystals. An analytical relationship between material strength, dislocation density, strain rate and dislocation mobility is proposed, which agrees well with current simulations and published experiments. Results show that material strength displays a decreasing regime (strain rate hardening) and then increasing regime (classical forest hardening) as the dislocation density increases. Accordingly, the strength displays universally, as the strain rate increases, a strain rate-independent regime followed by a strain rate hardening regime. All results are captured by a single scaling function, which relates the scaled strength to a coupling parameter between dislocation density and strain rate. Such coupling parameter also controls the localization of plasticity, fluctuations of dislocation flow and distribution of dislocation velocity.
位错滑移是一种普遍的变形模式,它决定了金属的强度。通过离散位错动力学和分子动力学模拟,我们研究了体心立方铜和铝单晶强度对应变速率和位错密度的依赖性。提出了材料强度、位错密度、应变速率和位错迁移率之间的解析关系,这与当前的模拟结果和已发表的实验结果吻合良好。结果表明,随着位错密度的增加,材料强度呈现出先降低(应变速率硬化)后增加(经典林位错强化)的趋势。相应地,随着应变速率的增加,强度普遍呈现出一个与应变速率无关的阶段,随后是应变速率硬化阶段。所有结果都由一个单一的标度函数描述,该函数将标度强度与位错密度和应变速率之间的耦合参数联系起来。这种耦合参数还控制了塑性的局部化、位错流的波动以及位错速度的分布。