Suppr超能文献

协同应变和配体效应增强基于铂的过氧化物酶纳米酶活性用于蛋白质生物标志物的飞摩尔级比色免疫分析

Synergistic Strain and Ligand Effects Boosting the Activity of Pt-Based Peroxidase Nanozymes for Femtomolar-Level Colorimetric Immunoassay of Protein Biomarkers.

作者信息

Zhang Han, Zhang Yan, Peng Xiang, Qiu Wanyu, Tan Yongfeng, Xu Jianglian, Li Qunfang, Tang Dianyong, Gao Zhuangqiang

机构信息

Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China.

School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, People's Republic of China.

出版信息

Anal Chem. 2025 Jul 1;97(25):13453-13464. doi: 10.1021/acs.analchem.5c01825. Epub 2025 Jun 20.

Abstract

Sensitive detection of protein biomarkers is crucial for advancing biomedical research and clinical management. Although colorimetric enzyme-linked immunosorbent assays (CELISAs) have been widely recognized as a benchmark technique for protein biomarker detection, their sensitivity is fundamentally constrained by the intrinsic catalytic limitations of conventional enzyme labels. In this study, we present the engineering of high-performance Pt-based peroxidase nanozymes leveraging the synergistic effects of strain and ligand interactions. This advancement enables the development of an ultrasensitive CELISA platform capable of detecting protein biomarkers at femtomolar levels, providing a promising solution to address the existing sensitivity limitations. These Pt-based peroxidase nanozymes are precisely engineered by conformally coating Pd nanocubes with uniform, ultrathin Pt shells consisting of just four atomic layers (Pd@Pt nanocubes). The atomic-level Pt shells endow the Pd@Pt nanocubes with the strain and ligand effects, resulting in a ∼2000-fold enhancement in peroxidase-like catalytic activity compared to traditional horseradish peroxidase (HRP), and thus making them highly efficient as catalytic labels for enhancing the sensitivity of CELISAs. Taking interleukin-6 (IL-6) detection as an example, we demonstrate that the Pd@Pt nanocube-based CELISA enables quantitative analysis within a dynamic range of 0.05-5 pg mL and achieves an impressive limit of detection (LOD) of 0.046 pg mL (1.8 fM), representing a ∼20-fold enhancement in sensitivity over the conventional HRP-based CELISA. These discoveries underscore the impact of strain and ligand modulation on enhancing the catalytic activity of nanozymes and highlight their potential as catalytic labels for advancing ultrasensitive bioassay technologies.

摘要

蛋白质生物标志物的灵敏检测对于推动生物医学研究和临床管理至关重要。尽管比色酶联免疫吸附测定法(CELISAs)已被广泛认可为蛋白质生物标志物检测的基准技术,但其灵敏度从根本上受到传统酶标记物内在催化局限性的制约。在本研究中,我们利用应变和配体相互作用的协同效应,构建了高性能的铂基过氧化物酶纳米酶。这一进展使得能够开发出一种超灵敏的CELISA平台,能够检测飞摩尔水平的蛋白质生物标志物,为解决现有的灵敏度限制提供了一个有前景的解决方案。这些铂基过氧化物酶纳米酶是通过用仅由四个原子层组成的均匀超薄铂壳(Pd@Pt纳米立方体)对钯纳米立方体进行共形包覆精确构建而成的。原子级的铂壳赋予了Pd@Pt纳米立方体应变和配体效应,与传统辣根过氧化物酶(HRP)相比,其类过氧化物酶催化活性提高了约2000倍,因此使其作为增强CELISAs灵敏度的催化标记物非常高效。以白细胞介素-6(IL-6)检测为例,我们证明基于Pd@Pt纳米立方体的CELISA能够在0.05 - 5 pg/mL的动态范围内进行定量分析,并实现了令人印象深刻的0.046 pg/mL(1.8 fM)的检测限,比传统基于HRP的CELISA灵敏度提高了约20倍。这些发现强调了应变和配体调节对增强纳米酶催化活性的影响,并突出了它们作为推进超灵敏生物测定技术的催化标记物的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验